Cellular aging and immunity

Keywords: cellular aging, phenotypes compose programmed cell death, immunity


Science is constantly evolving and updated with current data on cell biology. The cellular aging phenomenon should be considered an evolutionary mechanism of the biological regulation of all living organisms. Factors initiating cellular aging are variable. Each cell type can respond differently to the activation factors of cellular aging. In recent decades, science has been supplemented with new data that provide a deeper understanding of cellular and molecular mechanisms of cellular aging and the formation of immune homeostasis. There is a real prospect of using effective means of its regulation. In recent years, scientists have come close to discovering the mechanisms of cellular aging. Factors and mechanisms of cell regeneration are more deeply revealed. Scientists are also better aware of the phylogeny and ontogenesis of immune processes and the role of immune factors in developing pathologies. Researchers are increasingly focusing on modern diagnostic methods and xenotherapy. However, the specific factors of immunoregulation and the interaction of microphages, macrophages, and lymphocytes with other body cells are not yet fully understood. Accordingly, this requires further in-depth study. This review reviews the current literature on cellular aging and its regulatory mechanisms. The authors also present the results of their research on the mechanisms of immune responses in reproductive pathology. They draw parallels with modern scientific theories and interpret research. We will also focus on the issues that need to be addressed in the near future for the progressive development of this field of science. Thus, the study of the mechanisms of cellular aging and the development of effective means of hay therapy today requires further painstaking work. Despite significant advances in preclinical studies, many questions remain about the practical use of the drugs. This is especially true in the medicine of oncology, neurology, and cardiology. Nevertheless, scientists will be able to use pharmacological agents to influence cell division, differentiation, and determination in the future. We also hope to have developed effective means of immunotherapy of diseases. The molecular mechanisms of cell aging and mediators involved in the mechanisms of cell aging and death are being studied in detail. The field of research contains countless fascinating studies that are sure to be discovered.


Acosta, J. C., O'Loghlen, A., Banito, A., Guijarro, M. V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., Takatsu, Y., Melamed, J., d'Adda di Fagagna, F., Bernard, D., Hernando, E., & Gil, J. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell, 133(6), 1006–1018. https://doi.org/10.1016/j.cell.2008.03.038

Al Bitar, S., Ballouz, T., Doughan, S., Gali-Muhtasib, H., & Rizk, N. (2021). Potential role of micro ribonucleic acids in screening for anal cancer in human papillomavirus and human immunode-ficiency virus-related malignancies. World journal of gastroin-testinal pathophysiology, 12(4), 59–83. https://doi.org/10.4291/wjgp.v12.i4.59

Avelar, R. A., Ortega, J. G., Tacutu, R., Tyler, E. J., Bennett, D., Binetti, P., Budovsky, A., Chatsirisupachai, K., Johnson, E., Murray, A., Shields, S., Tejada-Martinez, D., Thornton, D., Fraifeld, V. E., Bishop, C. L., & de Magalhães, J. P. (2020). A multidimensional systems biology analysis of cellular senes-cence in aging and disease. Genome Biology, 21(1), 91. https://doi.org/10.1186/s13059-020-01990-9

Baar, K. (2017). Minimizing Injury and Maximizing Return to Play: Lessons from Engineered Ligaments. Sports medicine (Auck-land, N.Z.), 47(Suppl 1), 5–11. https://doi.org/10.1007/s40279-017-0719-x

Baar, M. P., Brandt, R., Putavet, D. A., Klein, J., Derks, K., Bour-geois, B., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D. A., van der Pluijm, I., Essers, J., van Cappellen, W. A., van IJcken, W. F., Houtsmuller, A. B., Pothof, J., de Bruin, R., Madl, T., Hoeijmakers, J., Campisi, J., … de Keizer, P. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeo-stasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132–147. https://doi.org/10.1016/j.cell.2017.02.031

Barbé-Tuana, F., Funchal, G., Schmitz, C., Maurmann, R. M., & Bauer, M. E. (2020). The interplay between immunosenescence and age-related diseases. Seminars in immunopathology, 42(5), 545–557. https://doi.org/10.1007/s00281-020-00806-z

Birch, J., & Gil, J. (2020). Senescence and the SASP: many thera-peutic avenues. Genes & development, 34(23-24), 1565–1576. https://doi.org/10.1101/gad.343129.120

Campisi, J. (2013). Aging, cellular senescence, and cancer. Annual review of physiology, 75, 685–705. https://doi.org/10.1146/annurev-physiol-030212-183653

Chiche, A., Chen, C., & Li, H. (2020). The crosstalk between cellu-lar reprogramming and senescence in aging and regeneration. Experimental gerontology, 138, 111005. https://doi.org/10.1016/j.exger.2020.111005

Childs, B. G., Baker, D. J., Kirkland, J. L., Campisi, J., & van Deursen, J. M. (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO reports, 15(11), 1139–1153. https://doi.org/10.15252/embr.201439245

Cho, K. A., Ryu, S. J., Oh, Y. S., Park, J. H., Lee, J. W., Kim, H. P., Kim, K. T., Jang, I. S., & Park, S. C. (2004). Morphological adjustment of senescent cells by modulating caveolin-1 status. The Journal of biological chemistry, 279(40), 42270–42278. https://doi.org/10.1074/jbc.M402352200

Collado, M., Blasco, M. A., & Serrano, M. (2007). Cellular senes-cence in cancer and aging. Cell, 130(2), 223–233. https://doi.org/10.1016/j.cell.2007.07.003

Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tu-mor suppression. Annual review of pathology, 5, 99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

da Silva, E. T., da Silva Santos, L., de Andrade, G. F., Rosa, E., & de Souza, M. (2022). Camphor nitroimine: a key building block in unusual transformations and its applications in the synthesis of bioactive compounds. Molecular diversity. https://doi.org/10.1007/s11030-021-10341-0

Davalos, A. R., Coppe, J. P., Campisi, J., & Desprez, P. Y. (2010). Senescent cells as a source of inflammatory factors for tumor progression. Cancer metastasis reviews, 29(2), 273–283. https://doi.org/10.1007/s10555-010-9220-9

Demaria, M., Desprez, P. Y., Campisi, J., & Velarde, M. C. (2015). Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin. The Journal of investigative dermatology, 135(7), 1722–1726. https://doi.org/10.1038/jid.2015.108

Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., Schurra, C., Garre', M., Nuciforo, P. G., Bensi-mon, A., Maestro, R., Pelicci, P. G., & d'Adda di Fagagna, F. (2006). Oncogene-induced senescence is a DNA damage re-sponse triggered by DNA hyper-replication. Nature, 444(7119), 638–642. https://doi.org/10.1038/nature05327

Di Micco, R., Krizhanovsky, V., Baker, D., & d'Adda di Fagagna, F. (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature reviews. Molecular cell biolo-gy, 22(2), 75–95. https://doi.org/10.1038/s41580-020-00314-w

Faget, D. V., Ren, Q., & Stewart, S. A. (2019). Unmasking senes-cence: context-dependent effects of SASP in cancer. Nature re-views. Cancer, 19(8), 439–453. https://doi.org/10.1038/s41568-019-0156-2

Feng, M., Marjon, K. D., Zhu, F., Weissman-Tsukamoto, R., Levett, A., Sullivan, K., Kao, K. S., Markovic, M., Bump, P. A., Jack-son, H. M., Choi, T. S., Chen, J., Banuelos, A. M., Liu, J., Gip, P., Cheng, L., Wang, D., & Weissman, I. L. (2018). Pro-grammed cell removal by calreticulin in tissue homeostasis and cancer. Nature communications, 9(1), 3194. https://doi.org/10.1038/s41467-018-05211-7

Ferreira, I., Wiedemeyer, K., Demetter, P., Adams, D. J., Arends, M. J., & Brenn, T. (2020). Update on the pathology, genetics and somatic landscape of sebaceous tumours. Histopathology, 76(5), 640–649. https://doi.org/10.1111/his.14044

Franceschi, C., & Campisi, J. (2014). Chronic inflammation (in-flammaging) and its potential contribution to age-associated dis-eases. The journals of gerontology. Series A, Biological sciences and medical sciences, 69 (Suppl 1), S4–S9. https://doi.org/10.1093/gerona/glu057

García-Prat, L., Muñoz-Cánoves, P., & Martínez-Vicente, M. (2017). Monitoring Autophagy in Muscle Stem Cells. Methods in molecular biology (Clifton, N.J.), 1556, 255–280. https://doi.org/10.1007/978-1-4939-6771-1_14

Gonçalves, S., Yin, K., Ito, Y., Chan, A., Olan, I., Gough, S., Cas-sidy, L., Serrao, E., Smith, S., Young, A., Narita, M., & Hoare, M. (2021). COX2 regulates senescence secretome composition and senescence surveillance through PGE2. Cell reports, 34(11), 108860. https://doi.org/10.1016/j.celrep.2021.108860

González-Gualda, E., Baker, A. G., Fruk, L., & Muñoz-Espín, D. (2021). A guide to assessing cellular senescence in vitro and in vivo. The FEBS journal, 288(1), 56–80. https://doi.org/10.1111/febs.15570

Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., Gil, J., Hara, E., Krizhanovsky, V., Jurk, D., Maier, A. B., Narita, M., Niedernhofer, L., Passos, J. F., Rob-bins, P. D., Schmitt, C. A., … Demaria, M. (2019). Cellular Se-nescence: Defining a Path Forward. Cell, 179(4), 813–827. https://doi.org/10.1016/j.cell.2019.10.005

Gu, H., Li, D., Sung, C. K., Yim, H., Troke, P., & Benjamin, T. (2011). DNA-binding and regulatory properties of the transcrip-tion factor and putative tumor suppressor p150(Sal2). Bio-chimica et Biophysica Acta, 1809(4-6), 276–283. https://doi.org/10.1016/j.bbagrm.2011.02.002

Gu, Y., Han, J., Jiang, C., & Zhang, Y. (2020). Biomarkers, oxida-tive stress and autophagy in skin aging. Ageing research reviews, 59, 101036. https://doi.org/10.1016/j.arr.2020.101036

Gu, Z., Cao, X., Jiang, J., Li, L., Da, Z., Liu, H., & Cheng, C. (2012). Upregulation of p16INK4A promotes cellular senes-cence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Cellular signalling, 24(12), 2307–2314. https://doi.org/10.1016/j.cellsig.2012.07.012

Hall, B. M., Balan, V., Gleiberman, A. S., Strom, E., Krasnov, P., Virtuoso, L. P., Rydkina, E., Vujcic, S., Balan, K., Gitlin, I., Leonova, K., Polinsky, A., Chernova, O. B., & Gudkov, A. V. (2016). Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be in-duced in young mice by senescent cells. Aging, 8(7), 1294–1315. https://doi.org/10.18632/aging.100991

Hardeland, R. (2019). Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. International journal of molecular sci-ences, 20(5), 1223. https://doi.org/10.3390/ijms20051223

Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental cell research, 25(3), 585–621. https://doi.org/10.1016/0014-4827(61)90192-6

Hernández-Mercado, E., Prieto-Chávez, J. L., Arriaga-Pizano, L. A., Hernández-Gutierrez, S., Mendlovic, F., Königsberg, M., & López-Díazguerrero, N. E. (2021). Increased CD47 and MHC Class I Inhibitory Signals Expression in Senescent CD1 Primary Mouse Lung Fibroblasts. International journal of molecular sciences, 22(19), 10215. https://doi.org/10.3390/ijms221910215

Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hall-marks of Cellular Senescence. Trends in cell biology, 28(6), 436–453. https://doi.org/10.1016/j.tcb.2018.02.001

Hinds, P., & Pietruska, J. (2017). Senescence and tumor suppres-sion. F1000Research, 6, 2121. https://doi.org/10.12688/f1000research.11671.1

Jagannath, C., Lindsey, D. R., Dhandayuthapani, S., Xu, Y., Hunter, R. L., Jr, & Eissa, N. T. (2009). Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nature medicine, 15(3), 267–276. https://doi.org/10.1038/nm.1928

Jiang, Y. Y., Lin, D. C., Mayakonda, A., Hazawa, M., Ding, L. W., Chien, W. W., Xu, L., Chen, Y., Xiao, J. F., Senapedis, W., Baloglu, E., Kanojia, D., Shang, L., Xu, X., Yang, H., Tyner, J. W., Wang, M. R., & Koeffler, H. P. (2017). Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut, 66(8), 1358–1368. https://doi.org/10.1136/gutjnl-2016-311818

Kapahi, P., Boulton, M. E., & Kirkwood, T. B. (1999). Positive correlation between mammalian life span and cellular resistance to stress. Free radical biology & medicine, 26(5-6), 495–500. https://doi.org/10.1016/s0891-5849(98)00323-2

Kim, S. Y., & Nair, M. G. (2019). Macrophages in wound healing: activation and plasticity. Immunology and cell biology, 97(3), 258–267. https://doi.org/10.1111/imcb.12236

Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell, 120(4), 437–447. https://doi.org/10.1016/j.cell.2005.01.027

Kirkwood, T. B., & Melov, S. (2011). On the programmed/non-programmed nature of ageing within the life history. Current biology: CB, 21(18), R701–R707. https://doi.org/10.1016/j.cub.2011.07.020

Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M. H., Abudu, Y. P., Acevedo-Arozena, A., Adamopoulos, I. E., Adeli, K., Adolph, T. E., Adornetto, A., Aflaki, E., Agam, G., Agarwal, A., Aggarwal, B. B., Agnello, M., Agostinis, P., … Tong, C. K. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, 17(1), 1–382. https://doi.org/10.1080/15548627.2020.1797280

Kondoh, H., & Hara, E. (2022). Targeting p21 for diabetes: Another choice of senotherapy. Cell metabolism, 34(1), 5–7. https://doi.org/10.1016/j.cmet.2021.12.008

Kowald, A., & Kirkwood, T. (2016). Can aging be programmed? A critical literature review. Aging cell, 15(6), 986–998. https://doi.org/10.1111/acel.12510

Kruse, M. L., Patel, M., McManus, J., Chung, Y. M., Li, X., Wei, W., Bazeley, P. S., Nakamura, F., Hardaway, A., Downs, E., Chandarlapaty, S., Thomas, M., Moore, H. C., Budd, G. T., Tang, W., Hazen, S. L., Bernstein, A., Nik-Zainal, S., Abraham, J., & Sharifi, N. (2021). Adrenal-permissive HSD3B1 genetic inheritance and risk of estrogen-driven postmenopausal breast cancer. JCI insight, 6(20), e150403. https://doi.org/10.1172/jci.insight.150403

Kuilman, T., Michaloglou, C., Mooi, W. J., & Peeper, D. S. (2010). The essence of senescence. Genes & development, 24(22), 2463–2479. https://doi.org/10.1101/gad.1971610

Labib, P. L., Goodchild, G., & Pereira, S. P. (2019). Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer, 19(1), 185. https://doi.org/10.1186/s12885-019-5391-0

Le Roux, I., Konge, J., Le Cam, L., Flamant, P., & Tajbakhsh, S. (2015). Numb is required to prevent p53-dependent senescence following skeletal muscle injury. Nature communications, 6, 8528. https://doi.org/10.1038/ncomms9528

Leontieva, O. V., & Blagosklonny, M. V. (2017). While reinforcing cell cycle arrest, rapamycin and Torins suppress senescence in UVA-irradiated fibroblasts. Oncotarget, 8(65), 109848–109856. https://doi.org/10.18632/oncotarget.17827

Lewis-McDougall, F. C., Ruchaya, P. J., Domenjo-Vila, E., Shin Teoh, T., Prata, L., Cottle, B. J., Clark, J. E., Punjabi, P. P., Awad, W., Torella, D., Tchkonia, T., Kirkland, J. L., & Ellison-Hughes, G. M. (2019). Aged-senescent cells contribute to impaired heart regeneration. Aging cell, 18(3), e12931. https://doi.org/10.1111/acel.12931

Liu, M., Yao, B., Gui, T., Guo, C., Wu, X., Li, J., Ma, L., Deng, Y., Xu, P., Wang, Y., Yang, D., Li, Q., Zeng, X., Li, X., Hu, R., Ge, J., Yu, Z., Chen, Y., Chen, B., Ju, J., … Zhao, Q. (2020). PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics, 10(10), 4437–4452. https://doi.org/10.7150/thno.42047

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell, 153, 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Martínez-Zamudio, R. I., Robinson, L., Roux, P. F., & Bischof, O. (2017). SnapShot: Cellular Senescence Pathways. Cell, 170(4), 816–816.e1. https://doi.org/10.1016/j.cell.2017.07.049

Mikuła-Pietrasik, J., Pakuła, M., Markowska, M., Uruski, P., Szczepaniak-Chicheł, L., Tykarski, A., & Książek, K. (2021). Nontraditional systems in aging research: an update. Cellular and molecular life sciences: CMLS, 78(4), 1275–1304. https://doi.org/10.1007/s00018-020-03658-w

Mitteldorf, J. (2019). What Is Antagonistic Pleiotropy? Biochemis-try. Biokhimiia, 84(12), 1458–1468. https://doi.org/10.1134/S0006297919120058

Mohs, A., Otto, T., Schneider, K. M., Peltzer, M., Boekschoten, M., Holland, C. H., Hudert, C. A., Kalveram, L., Wiegand, S., Saez-Rodriguez, J., Longerich, T., Hengstler, J. G., & Trautwein, C. (2021). Hepatocyte-specific NRF2 activation controls fibrogene-sis and carcinogenesis in steatohepatitis. Journal of hepatology, 74(3), 638–648. https://doi.org/10.1016/j.jhep.2020.09.037

Muñoz-Espín, D., Cañamero, M., Maraver, A., Gómez-López, G., Contreras, J., Murillo-Cuesta, S., Rodríguez-Baeza, A., Varela-Nieto, I., Ruberte, J., Collado, M., & Serrano, M. (2013). Pro-grammed cell senescence during mammalian embryonic devel-opment. Cell, 155(5), 1104–1118. https://doi.org/10.1016/j.cell.2013.10.019

Narita, M., & Narita, M. (2017). Autophagy Detection During Oncogene-Induced Senescence Using Fluorescence Microsco-py. Methods in molecular biology (Clifton, N.J.), 1534, 89–98. https://doi.org/10.1007/978-1-4939-6670-7_8

Nicolás-Ávila, J. A., Lechuga-Vieco, A. V., Esteban-Martínez, L., Sánchez-Díaz, M., Díaz-García, E., Santiago, D. J., Rubio-Ponce, A., Li, J. L., Balachander, A., Quintana, J. A., Martínez-de-Mena, R., Castejón-Vega, B., Pun-García, A., Través, P. G., Bonzón-Kulichenko, E., García-Marqués, F., Cussó, L., A-González, N., González-Guerra, A., Roche-Molina, M., … Hi-dalgo, A. (2020). A Network of Macrophages Supports Mito-chondrial Homeostasis in the Heart. Cell, 183(1), 94–109.e23. https://doi.org/10.1016/j.cell.2020.08.031

Olan, I., & Narita, M. (2021). Putting the DOT on IL1A. The Jour-nal of cell biology, 220(8), e202106164. https://doi.org/10.1083/jcb.202106164

Onufer, E. J., Czepielewski, R., Seiler, K. M., Erlich, E., Courtney, C. M., Bustos, A., Randolph, G. J., & Warner, B. W. (2019). Lymphatic network remodeling after small bowel resection. Journal of pediatric surgery, 54(6), 1239–1244. https://doi.org/10.1016/j.jpedsurg.2019.02.026

Passos, J. F., Nelson, G., Wang, C., Richter, T., Simillion, C., Proc-tor, C. J., Miwa, S., Olijslagers, S., Hallinan, J., Wipat, A., Saretzki, G., Rudolph, K. L., Kirkwood, T. B., & von Zglinicki, T. (2010). Feedback between p21 and reactive oxygen produc-tion is necessary for cell senescence. Molecular systems biology, 6, 347. https://doi.org/10.1038/msb.2010.5

Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D'Orazi, G. (2016). Apoptosis as anticancer mechanism: function and dys-function of its modulators and targeted therapeutic strategies. Ag-ing, 8(4), 603–619. https://doi.org/10.18632/aging.100934

Regulski, M. J. (2017). Cellular Senescence: What, Why, and How. Wounds: a compendium of clinical research and practice, 29(6), 168–174.

Rhinn, M., Ritschka, B., & Keyes, W. M. (2019). Cellular senes-cence in development, regeneration and disease. Development (Cambridge, England), 146(20), dev151837. https://doi.org/10.1242/dev.151837

Rose, M. R., & Graves, J. L., Jr (1989). What evolutionary biology can do for gerontology. Journal of gerontology, 44(2), B27–B29. https://doi.org/10.1093/geronj/44.2.b27

Ryu, E. (2014). Model fit evaluation in multilevel structural equation models. Frontiers in psychology, 5, 81. https://doi.org/10.3389/fpsyg.2014.00081

Sager, R. (1991). Senescence as a model of tumor suppression. Environmental health perspectives, 93, 59–62. https://doi.org/10.3389/fpsyg.2014.00081

Saleh, T., Tyutyunyk-Massey, L., Murray, G. F., Alotaibi, M. R., Kawale, A. S., Elsayed, Z., Henderson, S. C., Yakovlev, V., Elmore, L. W., Toor, A., Harada, H., Reed, J., Landry, J. W., & Gewirtz, D. A. (2019). Tumor cell escape from therapy-induced senescence. Biochemical pharmacology, 162, 202–212. https://doi.org/10.1016/j.bcp.2018.12.013

Schroder, K., & Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821–832. https://doi.org/10.1016/j.cell.2010.01.040

Sozou, P. D., & Kirkwood, T. B. (2001). A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA. Journal of theoretical biology, 213(4), 573–586. https://doi.org/10.1006/jtbi.2001.2432

Sun, J., Tai, S., Tang, L., Yang, H., Chen, M., Xiao, Y., Li, X., Zhu, Z., & Zhou, S. (2021). Acetylation Modification During Autophagy and Vascular Aging. Frontiers in physiology, 12, 598267. https://doi.org/10.3389/fphys.2021.598267

Teulière, J., Bhattacharya, D., & Bapteste, E. (2020). Ancestral germen/soma distinction in microbes: Expanding the disposable soma theory of aging to all unicellular lineages. Ageing research reviews, 60, 101064. https://doi.org/10.1016/j.arr.2020.101064

Veret, D., & Brondello, J. M. (2020). Sénothérapies - Avancées et nouvelles perspectives cliniques [Senotherapy: Advances and new clinical perspectives]. Medecine sciences: M/S, 36(12), 1135–1142. https://doi.org/10.1051/medsci/2020220

Visvikis, O., Ihuegbu, N., Labed, S. A., Luhachack, L. G., Alves, A. F., Wollenberg, A. C., Stuart, L. M., Stormo, G. D., & Ira-zoqui, J. E. (2014). Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity, 40(6), 896–909. https://doi.org/10.1016/j.immuni.2014.05.002

Wang, B., Kohli, J., & Demaria, M. (2020). Senescent Cells in Cancer Therapy: Friends or Foes? Trends in cancer, 6(10), 838–857. https://doi.org/10.1016/j.trecan.2020.05.004

Wang, Y., Liu, J., Burrows, P. D., & Wang, J. Y. (2020). B Cell Development and Maturation. Advances in experimental medicine and biology, 1254, 1–22. https://doi.org/10.1007/978-981-15-3532-1_1

Wang, Z., Su, G., Dai, Z., Meng, M., Zhang, H., Fan, F., Liu, Z., Zhang, L., Weygant, N., He, F., Fang, N., Zhang, L., & Cheng, Q. (2021). Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell prolifer-ation. Cell proliferation, 54(3), e12988. https://doi.org/10.1111/cpr.12988

Xia, Y., Rao, L., Yao, H., Wang, Z., Ning, P., & Chen, X. (2020). Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Advanced materials (Deerfield Beach, Fla.), 32(40), e2002054. https://doi.org/10.1002/adma.202002054

Yang, B., Chen, Y., & Shi, J. (2019). Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 119(8), 4881–4985. https://doi.org/10.1021/acs.chemrev.8b00626

Zhang, C., Hu, Y., & Shi, C. (2020). Targeting Natural Killer Cells for Tumor Immunotherapy. Frontiers in immunology, 11, 60. https://doi.org/10.3389/fimmu.2020.00060

Zhelavskyi, M. M. (2008). Funktsionalna aktyvnist ta stan apoptozu fahotsytiv krovi koriv v period laktatsii. Scientific Messenger of LNAVM іm. S. Z. Hzhytskoho, 10(2(37), 72–75 (in Ukrainian).

Zhelavskyi, M. M. (2009). Znachennia tsyrkuliuiuchykh imunnykh kompleksiv v patohenezi subklinichnoho mastytu koriv. Scientific Messenger of LNUVMB іm. S. Z. Hzhytskoho, 11(3(42), 46–49 (in Ukrainian).

Zhelavskyi, M. M. (2010). Zminy fahotsytarnoho orhanizmu koriv pry subklinichnomu mastyti. Scientific Messenger of LNUVMB іm. S. Z. Hzhytskoho, 12(2(44), 93–96 (in Ukrainian).

Zhelavskyi, M. M. (2017). Ontogenetic features of the formation of local immune protection of the mammary gland of cows (literature review and original research). Scientific Messenger of LNUVMB named after S. Z. Gzhytskyj, 19(79), 3–8. http://doi.org/10.15421/nvlvet7801

Zhelavskyi, M. M. (2019). Study of innate factors in the local im-mune defense of the genital organs of dogs and cats. Scientific Messenger of LNUVMB named after S. Z. Gzhytskyj, 21(93), 98–102. https://doi.org/10.32718/nvlvet9317

Zhelavskyi, M. M. (2021). The role of neutrophil on subclinical mastitis in cows. Polish Journal of Natural Sciences, 36(1), 107–115.

Zhelavskyi, M. M., & Shunin, I. M. (2017). The status of extracellu-lar antimicrobial potential of phagocytes genitals of cats. Scientific Messenger of Lviv National University of LNUVMB named after S. Z. Gzhytskyj, 19(73), 71–74. http://doi.org/10.15421/nvlvet7315

Zhelavskyi, M., Kernychnyi, S., & Dmytriv, O. (2021). Сell death and its significance in reproductive pathology. Ukrainian Jour-nal of Veterinary and Agricultural Sciences, 4(2), 18–26. https://doi.org/10.32718/ujvas4-2.04

Zhelavskyi, M., Kernychnyi, S., Mizyk, V., Dmytriv, O., & Betlin-ska, T. (2020). The importance of metabolic processes and im-mune responses in the development of pathology of cows during pregnancy and postpartum periods. Ukrainian Journal of Veter-inary and Agricultural Sciences, 3(2), 36-41. https://doi.org/10.32718/ujvas3-2.06

Zhelavskyi, M., Shunin, I., & Midyk, S. (2020). Extracellular anti-bacterial defense mechanisms of neutrophil granulocytes and their role in pathogenesis of pyometra (cases) in cats. Polish Journal of Natural Sciences, 35(3), 363–378.

Zheng, D. W., Lei, Q., Zhu, J. Y., Fan, J. X., Li, C. X., Li, C., Xu, Z., Cheng, S. X., & Zhang, X. Z. (2017). Switching Apoptosis to Ferroptosis: Metal-Organic Network for High-Efficiency An-ticancer Therapy. Nano Letters, 17(1), 284–291. https://doi.org/10.1021/acs.nanolett.6b04060

How to Cite
Zhelavskyi, M. M., Kernychnyi, S. P., Dmytriv, O. Y., & Betlinska, T. V. (2022). Cellular aging and immunity. Ukrainian Journal of Veterinary and Agricultural Sciences, 5(1), 8-16. https://doi.org/10.32718/ujvas5-1.02