Structural proteins of plasmolemma of the jejunum absorbing enterocytes of cattle fetus in early fetal period


Keywords: polypeptides, jejunum, enterocytes, apical membrane, basolateral membrane, plasma membrane, molecular weight, fetus, cattle, early fetal period, polyacrylamide gel electrophoresis.

Abstract

The data on the concentration of structural proteins of plasmolemma of the absorption enterocytes of the cattle fetus in the early fetal period are presented. Changes in the protein composition of the apical and basolateral membranes of enterocytes are manifested, characterized not only by changes in their ratio within different cell domains, but also by the dynamic redistribution of the number of different fractions of polypeptides between the poles of these cells. Analysis of the results of electrophoresis of apical membranes of the cattle fetus enterocytes in the early fetal period indicates a decrease in the content of low molecular weight protein fractions and an increase in high molecular weight. In the apical membranes of enterocytes of two-month-old cattle fetus, 25 protein fractions with a molecular weight of 9.6 to 205 kDa were detected. In the basolateral membranes revealed 23 protein fractions with a molecular weight of 9.6 to 120 kDa. High molecular weight fractions of polypeptides with molecular weights of 250 kDa and 300 kDa appear from the age of three months of embryos of calves. In the basolateral membranes of enterocytes, there is a slight decrease in the content of low molecular weight protein fractions, and from the four months of age of cattle fetus, high molecular weight fractions of polypeptides with molecular weights of 22.5 kDa and 155 kDa appear, which are absent in basolateral membranes of enterocytes. Two-month-old fetus lack proteins with a molecular weight of 19 kDa, 24 kDa, and 66 kDa in the apical part, whereas proteins with a mass of 22.5 kDa, 155 kDa, 170–185 kDa, and 205 kDa are absent on the basolateral membrane. In the apical membrane of enterocytes significantly more proteins with a low molecular weight of 9.6-14.2 kDa (1.56 times; P ≤ 0.001), whereas in the basolateral membrane a significantly higher concentration of proteins with a molecular weight of 15.5 kDa (2.06 times; P ≤ 0.001) and 17 kDa (3.62 times; P ≤ 0.001).

References

Aroeti, B., & Orzech, E. (1998). Polarized trafficking of plasma membrane proteins: emerging roles for coats, SNAREs, GTPases and their link to the cytoskeleton. Biochim. Biophys. Acta, 1376(1), 57–90. doi: 10.1016/s0304-4157(98)00005-7.

Bennett, V., & Healy, J. (2008). Organizing the fluid membrane bilayer: Diseases linked to spectrin and ankyrin. Trends Mol Med, 14(1), 28–36. doi: 10.1016/j.molmed.2007.11.005.

Buhai, A. O., & Tsvilikhovskyi, M. I. (2010). Zhyrnokyslotnyi sklad bazolateralnykh membran absorbtsiinykh enterotsytiv porozhnoi kyshky kurchat-broileriv za dii likopenu. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. Gzhytskoho, 3(2), 14–24 (in Ukrainian).

Caplan, M. J. (1997). Membrane polarity in epithelial cells: protein sorting and establishment of polarized domains. Am. J. Physiol., 272, F425–429. doi: 10.1152/ajprenal.1997.272.4.F425.

Casanova, J. E., & Mostov, K. E. (1990). Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science, 248(4956), 742–745. doi: 10.1126/science.2110383.

Cereijido, M., & Shoshani, L. (2004). Cell adhesion, polarity, and epithelia in the dawn ofmetazoans. Physiol Rev, 84(4), 1229–1262. doi: 10.1152/physrev.00001.2004.

Delacour, D., & Jacob, R. (2006). Apical protein transport. Cell. Mol. Life Sci, 63, 2491–2505. doi: 10.1007/s00018-006-6210-8.

Folsch, H. (2008). Regulation of membrane trafficking in polarized epithelial cells. Curr Opin Cell Biol, 20(2), 208–213. doi: 10.1016/j.ceb.2008.01.003.

Gravotta, D., & Rodriguez-Boulan, E. (2007). AP1B sorts basolat-eral proteins in recycling and biosynthetic routes of MDCK cells. Proc Natl Acad Sci, 104(5), 1564–1569. doi: 10.1073/pnas.0610700104.

Jaulin, F., & Kreitzer, G. (2007). Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev Cell, 13(4), 511–522. doi: 10.1016/j.devcel.2007.08.001.

Lafont, F., & Simons, K. (1994). Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature, 372(6508), 801–803. doi: 10.1038/372801a0.

Masiuk, D., Nedzvets'kyĭ, V., Tsvilikhovs'kyĭ, M., & Nerush, P. (2008). The changes of expression and Fc-gamma-receptor's polypeptide composition of fetal small intestine enterocytes in Bos primigenius taurus L. Physiological journal, 54(1), 27–34. https://www.ncbi.nlm.nih.gov/pubmed/18416181.

Mellman, I., & Nelson, W. J. (2008). Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol, 9(11), 833–845. doi: 10.1038/nrm2525.

Muth, T. R., & Caplan, M. J. (2003). Transport protein trafficking in polarized cells. Annu. Rev. Cell Dev. Biol, 19, 333–366. doi: 10.1146/annurev.cellbio.19.110701.161425.

Nejsum, L. N., & Nelson, W. J. (2007). A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J Cell Biol, 178(2), 323–335. doi: 10.1083%2Fjcb.200705094.

Nelson, W. (2009). Remodeling Epithelial Cell Organization: Transi-tions Between Front Rear and Apical-Basal Polarity. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a000513.

Rodriguez-Boulan, E., & Musch, A. (2005). Organization of vesicu-lar trafficking in epithelia. Nat. Rev. Mol. Cell Biol, 6(3), 233–247. doi: 10.1038/nrm1593.

Rodriguez-Boulan, E., & Powell, S. K. (1992). Polarity of epithelial and neuronal cells. Annu. Rev. Cell Biol, 8, 395–427. doi: 10.1146/annurev.cb.08.110192.002143.

Shin, K., & Margolis, B. (2006). Tight junctions and cell polarity. Annu Rev Cell Dev Biol, 22, 207–235. doi: 10.1146/annurev.cellbio.22.010305.104219.

Simons, K., & van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27(17), 6197–6202. doi: 10.1021/bi00417a001.

St Johnston, D., & Sanson, B. (2011). Epithelial polarity and morphogenesis. Curr Opin Cell Biol, 23(5), 540–546. doi: 10.1016/j.ceb.2011.07.005.

Tilney, L. G., & Mooseker, M. S. (1973). The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J. Cell Biol, 59(1), 109–126. doi: 10.1083%2Fjcb.59.1.109.

Tsvilikhovskyi, M. I. (1998). Bilky plazmatychnoi membrany epiteliiu tonkoho kyshechnyka velykoi rohatoi khudoby: dys... d-ra biol. nauk: 03.00.04. Natsionalnyi ahrarnyi un-t. K. (in Ukrainian).

Tsvilikhovskyi, M. I., & Yakymchuk, O. M. (2014). Limitni faktory i patolohiia tvaryn antenatalnoho ta postnatalnoho rozvytku. Visn. Poltav. derzh. ahrar. akad., 3, 92–94 (in Ukrainian).

Yeaman, C., & Nelson, W. J. (1999). New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev, 79(1), 73–98. doi: 10.1152/physrev.1999.79.1.73.
Published
2019-12-26
How to Cite
Masiuk, D. (2019). Structural proteins of plasmolemma of the jejunum absorbing enterocytes of cattle fetus in early fetal period. Ukrainian Journal of Veterinary and Agricultural Sciences, 2(3), 32-38. https://doi.org/https://doi.org/10.32718/ujvas2-3.08