Effects of probiotic Clostridium Butyrate on Performance and Immunocompetence and Digestive Function of poultry


  • Xiaofei Wang Xinke College, Henan Institute of Science and Technology, Eastern Hualan Str., 90, Xinxiang, 453003, China https://orcid.org/0000-0002-0802-9313
  • Yanzhao Xu Xinke College, Henan Institute of Science and Technology, Eastern Hualan Str., 90, Xinxiang, 453003, China https://orcid.org/0000-0003-4267-185X
  • Hanna Fotina Veterinary Medicine Department, Sumy National Agrarian University, Herasima Kondratieva Str., 160, Sumy, 40021, Ukraine https://orcid.org/0000-0002-0761-3681
Keywords: Clostridium butyrate, Broiler, Production performance, Immunocompetence

Abstract

The purpose of our research was to study the effects of dietary addition of Clostridium butyricum (CB) on performance, immunocompetence and digestive function of poultry. Using single factor experiment design, 720 one-day-old and healthy AA broilers were divided into 6 groups with 6 replicates in each group and 20 broilers in each replicate. Broilers in control group were fed a basal diet, while broilers of other experimental group were fed the basal diet supplemented with CB 250 mg/kg, 500 mg/kg, 750 mg/kg, 1000 mg/kg and 1250 mg/kg. The results showed as follows: The 1000mg/mg group had the best effect on immunity enhancement, with the thymus index, spleen index and bursa index increased by 18.38 % (P < 0.05), 16.00 % (P < 0.05) and 8.03 % (P > 0.05) in 1–21 days, and 6.45 % (P < 0.05), 12.92 % (P < 0.05) and 13.94 % (P < 0.05) in 22–49 days. The 1000 mg/kg group and 1250 mg/kg group had the best effect on improving the digestive function, with the VH/CD value increased by 27.56 % (P < 0.05) and 29.56 % (P < 0.05) in 1–21 days, and 29.48 % (P < 0.05) and 30.80 % (P < 0.05) in 22–49 days, with the number of harmful bacteria Escherichia coli and Salmonella decreased significantly (P < 0.05). These results indicated that the addition of CB in diets of broiler can improve the production performance, enhance immunity and improve digestive function, and the optimal dosage is 1000 mg/kg.

References

Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Sachan, S., Karthik, K., & Dhama, K. (2018). The Use of Probiotics as Eco-Friendly Alternatives for Antibiotics in Poultry Nutrition. Envi-ronmental Science and Pollution Research International, 25(11), 10611–10618. doi: 10.1007/s11356-018-1687-x.

Becattini, S., Taur, Y., & Pamer, E. G. (2016). Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Mo-lecular Medicine, 22(6), 458–478. doi: 10.1016/j.molmed.2016.04.003.

Cao, M., Li, Y., Wu, Q. J., Zhang, P., Li, W. T., Mao, Z. Y., Wu, D. M., Jiang, X. M., Zhuo, Y., Fang, Z. F., Che L. Q., Xu, S. Y., Feng, B., Li, J., Lin, Y., & Wu, D. (2019). Effects of dietary Clostridium butyricum addition to sows in late gestation and lac-tation on reproductive performance and intestinal microbiotal. Journal of Animal Science, 97(8), 3426–3439. doi: 10.1093/jas/skz186.

Chen, L., Li, S., Zhen, J., Li, W., Jiang, X., Zhao, X., Li, J., Che, L., Lin, Y., Xu, S., Feng, B., Fang, Z., & De, W. (2018). Effects of dietary Clostridium butyricum supplementation on growth performance, intestinal development, and immune response of weaned piglets challenged with lipopolysaccharide. Journal of Animal Science and Biotechnology, 23(9), 62–68.

Daeseleire, E., De Graef, E., Rasschaert, G., De Mulder, T., Van den Meersche, T., Van Coillie, E., Dewulf, J., & Heyndrickx, M. (2016). Antibiotic Use and Resistance in Animals: Belgian Initiatives. Drug Testing and Analysis, 8(5–6), 549–555. doi: 10.1002/dta.2010.

Friedman, M. (2015). Antibiotic-resistant Bacteria: Prevalence in Food and Inactivation by Food-Compatible Compounds and Plant Extracts. Journal of Agricultural and Food Chemistry, 63(15), 3805–3822. doi: 10.1021/acs.jafc.5b00778.

Gao, Q., & Wu, T. (2012). Ability of Clostridium butyricum to inhibit Escherichiacoli-induced apoptosis in chicken embryo in-testinal cells. Veterinary Microbiology, 160(3/4), 395–402. doi: 10.1016/j.vetmic.2012.06.009.

Guo, Y., Zhang, M., Han, F., & Tian, W. (2016). Effects of differ-ent probiotics on performance, immune function and intestinal flora of broilers. Acta Ecologiae Animalis Domastici, 37(11), 79–83.

He, J., Hu, D., Guo, Y., Li, X., Xiao, Y., Wang, X., Shi, D., Li, Z., Bi, D., & Zhou, Z. (2018). Influence of Clostridium butyricum CBI preparations on immune organ index, mucous membrane SIgA and serum biochemical parameters of broiler chickens. Chinese journal of veterinary medicine, 38(5), 998–1002.

Jia, C., Yang, C., Ceng, X., Liu, J., Zhang, J., & Chen, A. (2016). Effects of clostridium butyrate on growth performance, antioxi-dant capacity, immune function and serum biochemical parame-ters of broilers. Journal of animal nutrition, 28(3), 908–915.

Jin, L. Z., Ho, Y. W., Abdullah, N., & Jalaludin, S. (1998). Growth performance, intestinal microbial population, and serum choles-terol of broilers fed diets containing Lactobacillus culture. Poul-try Science, 77(9), 1259–1265. doi: 10.1093/ps/77.9.1259.

Liao, X. D., Ma, G., Cai, J., Fu, Y., Yan, X. Y., Wei, X. B., & Zhang, R. J. (2015). Effects of Clostridium butyricum on growth performance, antioxidation, and immune function of broilers. Poultry Science, 94(4), 662–667. doi: 10.3382/ps/pev038.

Liu, T., Hua, J., Wang, X., Liu, L., & Hai, P. (2012). Clostridium butyricum:Effects on Intestinal Microflora, Morphology and Mucosal Immunity-Associated Cells in Egg-Laying Male Chicks. Chinese Journal of Animal Nutrition, 24(11), 2210–2221.

Liu, X., Huang, L., Zhang, J., Gong, X., & Xia, Z. (2019). Effects of clostridium butyrate on growth performance, immune func-tion and blood antioxidant capacity of Beijing duck fed with clostridium butyrate. China Poultry, 41(10), 31–35.

Macdonald, S. E., Nolan, M. J., Harman, K., Boulton, K., Hume, D. A., Tomley, F. M., Stabler, R. A., Blake, D. P. (2017). Effects of Eimeria Tenella Infection on Chicken Caecal Microbiome Di-versity, Exploring Variation Associated With Severity of Pa-thology. PLoS One, 12(9), e0184890. doi: 10.1371/journal.pone.0184890.

Marshall, B. M., & Levy, S. B. (2011). Food Animals and Antimi-crobials: Impacts on Human Health. Clinical Microbiology Re-views, 24(4), 718–733 doi: 10.1128/CMR.00002-11.

Ministry of Agriculture of China. 2010. Approval of Clostridium butyrate and Bacillus licheniformis as new feed additives. Chi-nese Feed Additives, 4, 44.

Ni, J., Chen, X., & Liao, X. (2019). Screening of Single or Com-bined Administration of 9 Probiotics to Reduce Ammonia Emis-sions From Laying Hens. Poultry Science, 98(9), 3977–3988. doi: 10.3382/ps/pez138.

Pang, M., Lu, Q., Xia, B., & Zhang, H. (2016). Effects of clostridi-um caseinate on growth performance, intestinal tissue morphol-ogy and intestinal permeability of weaned piglets. Chinese Jour-nal of Animal Nutrition, 28(7), 2113–2121.

Pascua-Maestro, R., Corraliza-Gomez, M., Diez-Hermano, S., Perez-Segurado, C., Ganfornina, M. D., & Sanchez D. (2018). The MTT-formazan Assay: Complementary Technical Ap-proaches and in Vivo Validation in Drosophila Larvae. Acta Histochem, 120(3), 179–186. doi: 10.1016/j.acthis.2018.01.006.

Rubio, L. A., Ruiz, R., Peinado, M. J., & Echavarri, A. (2010). Morphology and Enzymatic Activity of the Small Intestinal Mu-cosa of Iberian Pigs as Compared With a Lean Pig Strain. Jour-nal of Animal Science, 88(11), 3590–3597. doi: 10.2527/jas.2010-304.

Tang, J., Sun, H., Yao, X., Wu, Y., & Wang, X. (2011). The distri-bution of bacillus spore in the intestinal tract of broilers and its effect on intestinal flora and digestive enzyme activity. Journal of Zhejiang University. Agric. & Life Sci., 37(3), 319–325.

Wang, J., Chen, Y., Wen, C., & Zhou, Y. (2010). Effects of biotin on growth performance, immune organ index, serum immune index and intestinal flora of broilers. Journal of animal nutrition, 22(1), 163–168.

Wang, K., Chen, G., Cao, G., Xu, Y., Wang, Y., & Yang, C. (2019). Effects of Clostridium butyricum and Enterococcus fae-calis on growth performance, intestinal structure, and inflamma-tion in lipopolysaccharide-challenged weaned piglets. Journal of Animal Science, 97(10), 4140–4151. doi: 10.1093/jas/skz235.

Watkins, R. R., & Bonomo, R. A. (2016). Overview: Global and Local Impact of Antibiotic Resistance. Infectious Disease Clinics of North America, 30(2), 313–322. doi: 10.1016/j.idc.2016.02.001.

Yang, H., Zhao, J., Xue, J., Yang, Y., & Zhang, G. (2017). Anti-genic Variation of LaSota and Genotype VII Newcastle Disease Virus (NDV) and Their Efficacy Against Challenge With Velo-genic NDV. Vaccine, 35(1), 27–32. doi: 10.1016/j.vaccine.2016.11.048.

Yi, Z. (2012). The research and application progress of forage mi-croecological preparation clostridium butyrate. Feed Research, 2, 14–17.

Yunping, D., Qingfeng, Z., Duoming, Z., Hongying, S., Senquan, L., & Yingzuo, B. (2009). Effect of clostridium butyrate on broiler performance. Guangdong Feed, 18(11), 22–23.

Zhang, B., Yang, X., & Guo, Y. (2011). Performance and the diges-tive tract of broiler chickens. Archives of Animal Nutrition, 65(4), 329–339.

Zhang, S. (2019). The effect of probiotics on improving the quality of poultry meat. Animal Science-Abroad Pigs and Poultry, 39(5), 48–51.

Zheng, Y., Wang, C., Yao, J., Lu, J. (2018). Effects of Clostridium butyricum on serum biochemical indices, antioxidant function and intestinal microbiota in weaned piglets. Journal of Zhejiang University (Agric. & Life Sci.), 44(2), 190–198.

Zheng, Y., Wang, C., Zou, X., Wang. L., & Lu, J. (2018). Effects of clostridium butyrate on growth performance, intestinal structure and immune function of weaned piglets. Chinese Journal of An-imal Nutrition, 30(7), 2683–2689.

Zhou, Q., Zheng, D., Su, H., Ling, S., & Bi, Y. (2009). Effect of clostridium butyrate on broiler performance. Guangdong Feed, 18(11), 22–23.
Published
2020-03-17
How to Cite
Wang, X., Xu, Y., & Fotina, H. (2020). Effects of probiotic Clostridium Butyrate on Performance and Immunocompetence and Digestive Function of poultry. Ukrainian Journal of Veterinary and Agricultural Sciences, 3(1), 27-33. https://doi.org/https://doi.org/10.32718/ujvas3-1.05