Removal of Cd2+ from aqueous solution by zeolite synthesized from Egyptian kaolin

  • Asmaa Kamel Bahgaat Soil Chemistry Dept. Desert Research Center (DRC), Cairo, Egypt
  • Helmy El-Sayed Hassan Laser Application in Metrology, Photochemistry and Agriculture Dept., National Institute of Laser Enhanced Sciences (NILES), Cairo University
  • Ahmed Abddel Aziz Melegy Geological Sciences Dept., National Research Center (NRC), Giza, Egypt
  • Ahmed Mohamed Abd-El kareem Soil Chemistry Dept. Desert Research Center (DRC), Cairo, Egypt
  • Manar Hassan Mohamed Laser Application in Metrology, Photochemistry and Agriculture Dept., National Institute of Laser Enhanced Sciences (NILES), Cairo University
Keywords: Egyptian synthetic zeolite-Y, Adsorption isotherms, Kinetic models, Cd2 , Removal, Distribution coefficient.


Zeolite Na-Y was prepared from kaolin located in Wadi-Hagul, Suez, Egypt. The synthetic zeolite prepared by the hydrothermal reaction of kaolin was characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) and cation exchange capacity (CEC). Cadmium ion removal was investigated using the synthetic solution of Cd2+ ions with different concentrations at room temperature (25 °C ± 0.2), initial pH of the solution and contact times. The optimum contact time for removal of Cd2+ ion was 10 min, with 0.1g of synthetic zeolite and pH 7.57. The experimental data were correlated using Langmuir, Freundlich and Harkins-Jura adsorption isotherms. The maximum adsorption capacity Qm obtained from the Langmuir isotherm was 14.006 mg/g for Cd2+ ion. Kinetic studies reveal that synthetic zeolite is more effective as adsorbent for removing cadmium ions


Adeoye, J. B., Omoleye, J., Ojewumi, M. E., & Babalola, R. (2017). Synthesis of Zeolite Y from Kaolin Using Novel Method of Dealumination. International Journal of Applied Engineering Research, 12(5), 755–760.

Ali, M. E. (2018). Synthesis and adsorption properties of chitosan-CDTA-GO nanocomposite for removal of hexavalent chromium from aqueous solutions. Arabian Journal of Chemistry, 11(7), 1107–1116. doi: 10.1016/j.arabjc.2016.09.010.

Al-Rudaini, K. A. (2017). Adsorption Removal of Rhodamine-B Dye from Aqueous Solution Using Rhamnus Stone as Low-Cost Adsorbent. Al-Nahrain Journal of Science, 20(1), 32–41. doi: 10.22401/JNUS.20.1.05.

Aly, Z., Graulet, A., Scales, N., & Hanley, T. (2014). Removal of aluminum from aqueous solutions using PAN-based adsorbents: characterization, kinetics, equilibrium and thermodynamic studies. Environmental Science and Pollution Research, 21(5), 3972–3986. doi: 10.1007/s11356-013-2305-6.

Aragaw, T. A., & Ayalew, A. A. (2019). Removal of water hard-ness using zeolite synthesized from Ethiopian kaolin by hydro-thermal method. Water Practice and Technology, 14(1), 145–159. doi: 10.2166/wpt.2018.116.

Aveen, H. M. & Kafia, M. S. (2014). Kinetics of cation exchange capacity of homoionic sodium form NaY zeolite. International Journal of Innovative Research in Science, Engineering and Technology, 3(6), 13137–13137.

Ayoola, A. A., Hymore, F. K., Ojewumi, M. E., & Uwoghiren, O. J. (2018). Effects of Sodium Hydroxide Concentration on Zeolite Y Synthesized from Elefun Kaolinite Clay in Nigeria. International Journal of Applied Engineering Research, 13(3), 1536–1536.

Ayoola, A. A., Hymore, F. K., Omodara, O. J., Oyeniyi, E. A., Fayomi, O. S., & Chisom, U. C. (2017). Effect of Crystallisation Time on the Synthesis of Zeolite Y from Elefun Kaolinite Clay. International Journal of Applied Engineering Research, 12(21), 10981–10988. 65.pdf.

Belaabed, R., Elknidri, H., Elkhalfaouy, R., Addaou, A., Laajab, A., & Lahsini, A. (2017). Zeolite Y synthesis without organic template: The effect of synthesis parameters. J. Mater. Environ. Sci., 8, 3550–3555. Document/vol8/vol8_N10/374-JMES-Belaabed.pdf.

Black, C. A., Evans, D. D., Ensminger, L. E., White, J. L., & Clark, F. E. (1985). Methods of soil analysis. American Society of Agronomy, Inc., Madison, Wisconsin, USA Library of Congress Catalog card Number: 65-15800, U.S.A. 7th printing.

Chen, G., & Shi, L. (2017). Removal of Cd (II) and Pb (II) ions from natural water using a low-cost synthetic mineral: behavior and mechanisms. RSC advances, 7(69), 43445–43454. doi: 10.1039/C7RA08018B.

Chen, Y. G., Ye, W. M., Yang, X. M., Deng, F. Y., & He, Y. (2011). Effect of contact time, pH, and ionic strength on Cd (II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environmental Earth Sciences, 64(2), 329–336. doi: 10.1007/s12665-010-0850-6.

Covarrubias, C., Arriagada, R., Yanez, J., Garcia, R., Angélica, M., Barros, S. D., & Sousa‐Aguiar, E. F. (2005). Removal of chromium (III) from tannery effluents, using a system of packed columns of zeolite and activated carbon. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80(8), 899–908. doi: 10.1002/jctb.1259.

Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. J. I. J. C. (2012). Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38–45.

EL Zayat, M. A. K. (2014). Adsorption of heavy metals cations in wastewater using cement kiln dust. PhD diss., The American University in Cairo.

El-Naggar, I. M., Ahmed, S. A., Shehata, N., Sheneshen, E. S., Fathy, M., & Shehata, A. (2019). A novel approach for the removal of lead (II) ion from wastewater using Kaolinite/Smectite natural composite adsorbent. Applied Water Science, 9(1), 7. doi: 10.1007/s13201-018-0845-0.

Erdogan, F. O. (2019). Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents. Chemistry, 13(2), 129–135. doi: 10.23939/chcht13.02.129.

Fahmy, A., Youssef, H. F., & Elzaref, A. S. (2016). Adsorption of Cadmium Ions onto Zeolite-A prepared from Egyptian Kaolin using Microwave. Int J Sci Res, 5, 1549–1555.

Fakhri, A. (2017). Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: Ki-netics, thermodynamics and mechanism studies. Journal of Sau-di Chemical Society, 21(1), S52–S57. doi: 10.1016/j.jscs.2013.10.002.

Fathy, M., Moghny, T. A., Mousa, M. A., El-Bellihi, A. H. A., & Awadallah, A. E. (2016). Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models. Applied Nanoscience, 6(8), 1105–1117. doi: 10.1007/s13204-016-0537-8.

Fatimah, I., & Rubiyanto, D. (2018). Effect of KF Modification to Kaolinite Catalytic Activity in Microwave-Assisted Biodiesel Conversion. Egyptian Journal of Chemistry, 61(1), 213–223. doi: 10.21608/ejchem.2018.2041.1163.

Franus, M., Bandura, L., & Madej, J. (2019). Mono and Poly-Cationic Adsorption of Heavy Metals Using Natural Glauconite. Minerals, 9(8), 470. doi: 10.3390/min9080470.

Freundlich, H., & Hatfield, H. S. (1926). Colloid and capillary chemistry, Methuen and Co. Ltd., London, 110–114.

Guan, L., Wang, Z., & Lu, D. (2019). Evolution of Zeolite Crystals in Self-Supporting Faujasite Blocks: Effects of Hydrothermal Conditions. Materials, 12(12), 1965. doi: 10.3390/ma12121965.

Hardie, M., & Doyle, R. (2012). Measuring soil salinity. In Plant salt tolerance (pp. 415–425). Humana Press, Totowa, NJ.

Harkins, W. D., & Jura, G. (1944). Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. Journal of the American Chemical Society, 66(8), 1366–1373. doi: 10.1021/ja01236a048.

Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Transactions of the Institution of Chemical Engineers, 76(4), 332–340. doi: 10.1205/095758298529696.

Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., & Li, R. (2019). Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chemical Engineering Journal, 359, 363–372. doi: 10.1016/j.cej.2018.11.087.

Iftitahiyah, V. N., Prasetyoko, D., Nur, H., Bahruji, H., & Hartati, H. (2018). Synthesis and characterization of zeolite NaX from Bangka Belitung Kaolin as alternative precursor. Malaysian Journal of Fundamental and Applied Sciences, 14(4), 414–418. doi: 10.11113/mjfas.v14n4.964.

Ismael, I. S., Melegy, A., & Kratochvíl, T. (2012). Lead removal from aqueous solution by natural and pretreated zeolites. Ge-otechnical and Geological Engineering, 30(1), 253–262. doi: 10.1007/s10706-011-9466-1.

Jamil, T. S., Ibrahim, H. S., El-Maksoud, I. A., & El-Wakeel, S. T. (2010). Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination, 258(1–3), 34–40. doi: 10.1016/j.desal.2010.03.052.

Ji, Z., Su, L., & Pei, Y. (2020). Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers. Materials Chemis-try and Physics, 242, 122535.

Khalifah, S. N., Aini, Z. N., Hayati, E. K., Aini, N., & Prasetyo, A. (2018). Synthesis and characterization of mesoporous NaY zeo-lite from natural Blitar’s kaolin. Materials Science and Engineer-ing, 333(1), 012005. doi: 10.1088/1757-899X/333/1/012005.

Kwakye-Awuah, B., Sefa-Ntiri, B., Von-Kiti, E., Nkrumah, I., & Williams, C. (2019). Adsorptive Removal of Iron and Manga-nese from Groundwater Samples in Ghana by Zeolite Y Synthe-sized from Bauxite and Kaolin. Water, 11(9), 1912. doi: 10.3390/w11091912.

Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. doi: 10.1021/ja02242a004.

Mehdizadeh, S., Sadjadi, S., Ahmadi, S. J., & Outokesh, M. (2014). Removal of heavy metals from aqueous solution using platinum nanoparticles/ Zeolite-4A. Journal of Environmental Health Science and Engineering, 12(1), 7. doi: 10.1186/2052-336X-12-7.

Merrikhpour, H., & Jalali, M. (2013). Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 15(2), 303–316. doi: 10.1007/s10098-012-0522-1.

Mishra, P. C., & Patel, R. K. (2009). Removal of lead and zinc ions from water by low-cost adsorbents. Journal of Hazardous Materials, 168(1), 319–325. doi: 10.1016/j.jhazmat.2009.02.026.

Naiya, T. K., Bhattacharya, A. K., & Das, S. K. (2009). Adsorptive removal of Cd (II) ions from aqueous solutions by rice husk ash. Environmental progress & sustainable energy, 28(4), 535–546. doi: 10.1002/ep.10346.

Olaremu, A. G., Odebunmi, E. O., Nwosu, F. O., Adeola, A. O., & Abayomi, T. G. (2018). Synthesis of zeolite from kaolin clay from Erusu Akoko southwestern. Journal of Chemical Society of Nigeria, 43(3), 381–786. index.php/jcsn/article/view/188.

Ören, A. H., & Kaya, A. (2006). Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. Journal of hazardous materials, 131(1-3), 59–65. doi: 10.1016/j.jhazmat.2005.09.027.

Rahimi, M., & Mahmoudi, J. (2020). Heavy Metals Removal from Aqueous Solution by Modified Natural Zeolites Using Central Composite Design. Periodica Polytechnica Chemical Engineering, 64(1), 106–115. doi: 10.3311/PPch.13093.

Rahman, A. U., Khan, F. U., Rehman, W. U., & Saleem, S. (2018). Synthesis and characterization of zeolite 4A using swat kaolin. Journal of Chemical Technology and Metallurgy, 53(5), 825–829.

Rahman, R. A., Ibrahim, H. A., Hanafy, M., & Monem, N. A. (2010). Assessment of synthetic zeolite Na A–X as a sorbing barrier for strontium in a radioactive disposal facility. Chemical Engineering Journal, 157(1), 100–112. doi: 10.1016/j.cej.2009.10.057.

Rani, R. D., & Sasidhar, P. (2012). Sorption of cesium on clay colloids: kinetic and thermodynamic studies. Aquatic geochemistry, 18(4), 281–296. doi: 10.1007/s10498-012-9163-6.

Shaheen, S. M., Derbalah, A. S., & Moghanm, F. S. (2012). Removal of heavy metals from aqueous solution by zeolite in competitive sorption system. International Journal of Environmental Science and Development, 3(4), 362.

Singh, B., Alloway, B. J., & Bochereau, F. J. M. (2000). Cadmium sorption behavior of natural and synthetic zeolites. Communica-tions in soil science and plant analysis, 31(17–18), 2775–2786. doi: 10.1080/00103620009370626.

Somderama, S., Aziza, A. S. A., Abdullaha, A. H., & Matb, R. (2019). Characterisation of NaA Zeolite Made from Malaysian Kaolin. Chemical Engineering, 72. doi: 10.3303/CET1972055.

Tavasoli, M., Kazemian, H., Sadjadi, S., & Tamizifar, M. (2014). Synthesis and characterization of zeolite NaY using kaolin with different synthesis methods. Clays and Clay Minerals, 62(6), 508–518. doi: 10.1346/CCMN.2014.0620605.

Warzybok, M., & Warchol, J. (2018). Synthesis of kaolin-based zeolite Y and its application for adsorption of two carbonyl compound gases. Czasopismo Inżynierii Lądowej, Środowiska i Architektury, 65, 13–26. doi: 10.7862%2Frb.2018.2.

Yildiz, S. (2017). Kinetic and isotherm analysis of Cu (II) adsorp-tion onto almond shell (Prunus dulcis). Ecological Chemistry and Engineering S, 24(1), 87–106. doi: 10.1515/eces-2017-0007.

Yuna, Z. (2016). Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environ-mental Engineering Science, 33(7), 443–454. doi: 10.1089/ees.2015.0166.

Yusof, Y., Sugimoto, K., Ozawa, H., Uno, S., & Nakazato, K. (2010). On-chip microelectrode capacitance measurement for bi-osensing applications. Japanese Journal of Applied Physics, 49(1S), 01AG05. doi: 10.1143/JJAP.49.01AG05.

Zewail, T. M., & Yousef, N. S. (2015). Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alexandria Engineering Journal, 54(1), 83–90. doi: 10.1016/j.aej.2014.11.008.
How to Cite
Bahgaat, A., Hassan, H., Melegy, A., Abd-El kareem, A., & Mohamed, M. (2020). Removal of Cd2+ from aqueous solution by zeolite synthesized from Egyptian kaolin. Ukrainian Journal of Veterinary and Agricultural Sciences, 3(2), 12-23.