Isolation, identification and Analysis of Drug Resistance of Salmonella Pul-lorum


  • Liu Zhike Faculty of Veterinary Medicine, Sumy National Agrarian University, Herasima Kondratieva Str., 160, Sumy, 40021, Ukraine https://orcid.org/0000-0003-2892-4005
  • Tetiana Fotina Faculty of Veterinary Medicine, Sumy National Agrarian University, Herasima Kondratieva Str., 160, Sumy, 40021, Ukraine https://orcid.org/0000-0001-5079-2390
  • Roman Petrov Faculty of Veterinary Medicine, Sumy National Agrarian University, Herasima Kondratieva Str., 160, Sumy, 40021, Ukraine https://orcid.org/0000-0001-6252-7965
  • Zhanna Klishchova Faculty of Veterinary Medicine, Sumy National Agrarian University, Herasima Kondratieva Str., 160, Sumy, 40021, Ukraine https://orcid.org/0000-0002-4152-9539
  • Anatoliy Fotin Faculty of Veterinary Medicine, Sumy National Agrarian University, Herasima Kondratieva Str., 160, Sumy, 40021, Ukraine https://orcid.org/0000-0001-5703-6467
Keywords: Salmonella Pullorum, Isolation and identification, PCR amplification, Drug sensitivity test.

Abstract

The article provides data on the isolation and identification of the pathogen S. Pullorum from pathological material of chickens. With further study of tinctorial, cultural-morphological and biological properties of the pathogen. The susceptibility of Salmonella pullorum to broad-spectrum antibacterial drugs such as cephalosporins and carbopenems was further studied to determine the drug of choice for improving treatment and prevention of avian bacterial diseases. In order to diagnose Salmonella pullorum (S. Pullorum) diarrhea accurately and analyze its drug resistance. In this study, the pathogen of a chicken suspected of S. Pullorum was isolation, PCR amplification and drug sensitivity analysis of the pathogen from in chicken farm in Xinxiang, north China. The results showed that the bacteria strain was diagnosed as S. Pullorum base on isolation and identification, Gram staining and biochemical identification of the bacteria. Antibacterial drugs sensitivity test confirmed that the bacteria was sensitive to ceftiofur, ceftriaxone, meropenem and kanamycin, and the effect of sensitive antibiotics was obvious in clinical treatment. Altogether, the present experiment revealed a detailed measure for S. Pullorum prevention and control and that achieved good clinical results, which laid a fundamental information for farmers and veterinary workers on eradication of S. Pullorum.

References

Abakpa, G. O., Umoh, V. J., Ameh, J. B., et al. (2014). Diversity and antimicrobial resistance of Salmonella enterica, isolated from fresh produce and environmental samples. Environmental Nanotechnology Monitoring & Management, 3(5), 38–46. doi: 10.1016/j.enmm.2014.11.004.

Ahmed, A. O., Raji, M. A., Mamman, P. H., et al. (2019). Salmo-nellosis: Serotypes, prevalence and multi-drug resistant profiles of Salmonella enterica in selected poultry farms, Kwara State, North Central Nigeria. The Onderstepoort Journal of Veterinary Research, 86(1), e1–e8. doi: 10.4102/ojvr.v86i1.1667.

Ahmed, N., Ali, Z., Riaz, M., et al. (2020). Evaluation of Antibiotic Resistance and Virulence Genes among Clinical Isolates of Pseudomonas aeruginosa from Cancer Patients. Asian Pac J Cancer Prev, 21(5), 1333–1338. doi: 10.31557/APJCP.2020.21.5.1333.

Akinola, S. A., Mwanza, M., Ateba, C. N. (2019). Occurrence, Genetic Diversities And Antibiotic Resistance Profiles Of Sal-monella Serovars Isolated From Chickens. Infection and Drug Resistance, 12, 3327–3342. doi: 10.2147/IDR.S217421.

Chen, C., Li, J., Zhang, H., et al. (2020). Effects of a probiotic on the growth performance, intestinal flora, and immune function of chicks infected with Salmonella pullorum. Poultry Science, 99(11), 5316–5323. doi: 10.1016/j.psj.2020.07.017.

Gharieb, R. M., Tartor, Y. H., & Khedr, M. H. E. (2015). Non-Typhoidal Salmonella, in poultry meat and diarrhoeic patients: prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug resistant strains. Gut Pathogens, 7(1), 1–11. doi: 10.1186/s13099-015-0081-1.

Guo, R, Li, Z., Zhou, X., et al. (2018). Induction of arthritis in chickens by infection with novel virulent Salmonella Pullorum strains. Veterinary Microbiology, 228, 165–172. doi: 10.1016/j.vetmic.2018.11.032.

Guo, X., Wang, H., Cheng, Y., et al. (2018). Quinolone resistance phenotype and genetic characterization of Salmonella enterica serovar Pullorum isolates in China, during 2011 to 2016. BMC Microbiology, 18(1), 225–231. doi: 10.1186/s12866-018-1368-4.

Gut, A. M., Vasiljevic, T., Yeager, T., et al. (2018). Salmonella infection – prevention and treatment by antibiotics and probiotic yeasts: a review. Microbiology, 164(11), 1327–1344. doi: 10.1099/mic.0.000709.

Huang, Y. S., Wu, Y. C., Hu, C. W., et al. (2016). Isolation and Characterization of Salmonella spp. in Sheltered Wild Birds in Taiwan. Pakistan Veterinary Journal, 36(4), 472–476.

Li, X., Nie, C., Liu, Y., et al. (2019). A genome-wide association study explores the genetic determinism of host resistance to Salmonella pullorum infection in chickens. Genetics Selection Evolution, 51(1), 51–62. doi: 10.1186/s12711-019-0492-4.

Nhung, N. T., Chansiripornchai, N., & Carrique-Mas, J. J. (2017). Antimicrobial Resistance in Bacterial Poultry Pathogens: A Re-view. Frontiers in Veterinary Science, 4(126), 1–17. doi: 10.3389/fvets.2017.00126.

Parvin, M. S., Hasan, M. M., Ali, M. Y., et al. (2020). Prevalence and Multidrug Resistance Pattern of Salmonella Carrying Ex-tended-Spectrum β-Lactamase in Frozen Chicken Meat in Bang-ladesh. Journal of food protection, 83(12), 2107–2121. doi: 10.4315/JFP-20-172.

Qiu, J. W., Xiao, C. Z., Tian, W., et al. (2018). Effect of dietary oridonin supplementation on growth performance, gut health, and immune response of broilers infected with Salmonella pullo-rum. Irish Veterinary Journal, 71(1), 1–6. doi: 10.1186/s13620-018-0128-y.

Ramirezhernandez, A., Carrascalcamacho, A. K., Brashears, M. M., et al. (2021). Genotypic Characterization of Antimicrobial Re-sistant Salmonella spp. Strains from Three Poultry Processing Plants in Colombia. Foods, 10(3), 491–507. doi: 10.3390/foods10030491.

Rodrigues, G. L., Panzenhagen, P., Ferrari, R. G., Paschoalin, V. M. F., & Conte-Junior, C. A. (2020). Antimicrobial Resistance in Nontyphoidal Salmonella Isolates from Human and Swine Sources in Brazil: A Systematic Review of the Past Three Dec-ades. Microbial Drug Resistance, 26(10), 1260–1270. doi: 10.1089/mdr.2019.0475.

Salem, R. B., Abbassi, M. S., García, V., et al. (2015). Detection and molecular characterization of Salmonella enterica serovar Eppendorf circulating in chicken farms in Tunisia. Zoonoses & Public Health, 63(4), 320–327. doi: 10.1111/zph.12234.

Samykannu G., Vijayababu, P., et al. (2019). In Silico Characteriza-tion of B Cell and T Cell Epitopes for Subunit Vaccine Design of Salmonella typhi PgtE: A Molecular Dynamics Simulation Approach. Journal of Computational Biology A Journal of Computational Molecular Cell Biology, 26(2), 105–116. doi: 10.1089/cmb.2018.0010.

Song, Y., Wang, F., Song, Y., et al. (2020). Occurrence and Charac-terization of Salmonella Isolated From Chicken Breeder Flocks in Nine Chinese Provinces. Frontiers in Veterinary Science, 8(7), 479–489. doi: 10.3389/fvets.2020.00479.

Sousa, E., Cortez, A., Melhem, M., et al. (2020). Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Brazilian Journal of Microbiology, 51(4), 1791–1800. doi: 10.1007/s42770-020-00354-6.

Tamang, M. D., Gurung, M., Nam H. M., et al. (2014). Antimicro-bial susceptibility and virulence characteristics of Salmonella en-terica Typhimurium isolates from healthy and diseased pigs in Korea. Journal of Food Protection, 77(9), 1481–1486. doi: 10.4315/0362-028X.JFP-14-084.

Torres, A. C., Vannini, V., Bonacina, J., et al. (2016). Cobalamin production by Lactobacillus coryniformis: biochemical identifi-cation of the synthetized corrinoid and genomic analysis of the biosynthetic cluster. Bmc Microbiology, 16(1), 240–249. doi: 10.1186/s12866-016-0854-9.

Voss-Rech, D., Potter, L., et al. (2017). Antimicrobial Resistance in Nontyphoidal Salmonella Isolated from Human and Poultry-Related Samples in Brazil: 20-Year Meta-Analysis. Foodborne pathogens and disease, 14(2), 116–124. doi: 10.1089/fpd.2016.2228.

Wigley, P. (2017). Salmonella enterica serovar Gallinarum: address-ing fundamental questions in bacteriology sixty years on from the 9R vaccine. Avian Pathology, 46(2), 119–124. doi: 10.1080/03079457.2016.1240866.

Zhao, X., Hu, M., Zhang, Q., et al. (2020). Characterization of integrons and antimicrobial resistance in Salmonella from broil-ers in Shandong, China. Poultry Science, 99(12), 7046–7054. doi: 10.1016/j.psj.2020.09.071.
Published
2021-03-01
How to Cite
Zhike, L., Fotina, T., Petrov, R., Klishchova, Z., & Fotin, A. (2021). Isolation, identification and Analysis of Drug Resistance of Salmonella Pul-lorum. Ukrainian Journal of Veterinary and Agricultural Sciences, 4(1), 33-38. https://doi.org/https://doi.org/10.32718/ujvas4-1.07