Design of antigen synthesis and identification of its artificial antigen for zearalenone


  • Yanan Wang College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
  • Hanna Fotina Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, 40021, Ukraine https://orcid.org/0000-0002-0761-3681
  • Alexsey Fotin Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, 40021, Ukraine
Keywords: ZEN, Artificial antigen, Polyclonal antibody, Performance Identification

Abstract

Background: study aimed to modify the ZEN molecule and conjugate the carrier protein to prepare a complete antigen. To lay the foundation for the preparation of ZEN monoclonal antibodies. Methods: The carbonyl group at the 7 position of ZEN molecule was modified by deuteration reaction. The immunogen and antigen were synthesized by EDC method and mixed acid anhydride method, and the complete antigen was identified by UV, IR and electrophoresis. Antisera were obtained after immunization of animals, and an antiserum was designed by ELISA. Results: The immunogens were identified by UV, IR and electrophoresis, ZEN-BSA was successfully synthesized. The ratio of ZEN-BAS to ZEN was calculated to be 1 : 13. When the antibody serum was detected, the titer of the antibody reached 1:(6.4×103). Conclusion: This study demonstrated that the OAE method is preferable in preparing the ZEN. These findings lay the material and technical foundation for the preparation of anti-ZEN monoclonal antibody

References

Bertuzzi, T., Camardo Leggieri, M., Battilani, P., & Pietri, A. (2014). Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009-2011. Food Addit Contam Part B Surveill, 7, 273–281. doi: 10.1080/19393210.2014.926397.

Cao, H., Ji, F., Wang, X. Y., & Shi, J. R. (2011). [Synthesis and identification of the hapten and complete antigens for Zeara-lenone] Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 27(9), 975–978. URL: https://pubmed.ncbi.nlm.nih.gov/21906470.

Cha, S. H., Kim, S. H., Bischoff, K., Kim, H. J., Son, S. W., & Kang, H. G. (2012) Production of a highly group-specific mon-oclonal antibody against zearalenone and its application in an en-zyme-linked immunosorbent assay. J Vet Sci., 13(2), 119–125 doi: 10.4142/jvs.2012.13.2.119.

Chen, X.-Q., Zhao, W., Xie, S.-W., Xie, J.-J., Zhang, Z.-H., Tian, L.-X., Liu, Y.-J., & Niu, J. (2019). Effects of dietary hydrolyzed yeast (Rhodotorula mucilaginosa) on growth performance, im-mune response, antioxidant capacity and histomorphology of ju-venile Nile tilapia (Oreochromis niloticus). Fish Shellfish Immu-nol, 90, 30–39. doi: 10.1016/j.fsi.2019.03.068.

CHINA (2017). National Food Safety Standard Limit of mycotoxins in food vol GB 2761 – 2017.

Dong, G., Pan, Y., Wang, Y., Ahmed, S., Liu, Z., Peng, D., & Yuan, Z. (2018). Preparation of a broad-spectrum anti-zearalenone and its primary analogues antibody and its applica-tion in an indirect competitive enzyme-linked immunosorbent as-say. Food Chem, 247, 8–15 doi: 10.1016/j.foodchem.2017.12.016.

EC (2007). Setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize prod-ucts (Text with EEA relevance) vol No.1126/2007.

Faisal, Z., Lemli, B., Szerencsés, D. et al. (2018) Interactions of zearalenone and its reduced metabolites α-zearalenol and β-zearalenol with serum albumins: species differences, binding sites, and thermodynamics. Mycotoxin Res, 34, 269–278. doi: 10.1007/s12550-018-0321-6.

Gaimei, D. U., Liu, M., Gan, Y., Wei, Y., & Yuzi, W. U. (2013). Study on Screening of Optimal Blocking Buffer and Sample Diluent for ELISA. Agricultural Science and Technology, 14, 816–819, 837 doi: 10.16175/j.cnki.1009-4229.2013.06.027.

Jia, Z., Liu, M., Qu, Z., Zhang, Y., Yin, S., & Shan, A. (2014). Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats. Environ Toxicol Pharmacol, 37(2), 580–591. doi: 10.1016/j.etap.2014.01.010.

Jiang, J. Q., Zhang, H. T., Zhang, H. H., Wang, Z. L., Yang, X. F., & Fan, G. Y. (2014). Development of an enzyme-linked im-munosorbent assay for detection of clopidol residues in chicken tissues. J Sci Food Agric, 94(11), 2295–2300. doi:10.1002/jsfa.6557.

Kim, S. H., Cha, S. H., Karyn, B., Park, S. W., & Kang, H. G. (2011). Production of Group Specific Monoclonal Antibody to Aflatoxins and its Application to Enzyme-linked Immunosorbent Assay. Toxicological Research, 27(2), 125–131 doi: 10.5487/TR.2011.27.2.125.

Kresse, M., Drinda H., Romanotto, A., & Speer, K. (2019). Simul-taneous determination of pesticides, mycotoxins, and metabolites as well as other contaminants in cereals by LC-LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 1117, 86–102. doi: 10.1016/j.jchromb.2019.04.013.

Liu, M., Gao, R., Meng, Q., Zhang, Y., Bi, C., Shan, A. (2014). Toxic effects of maternal zearalenone exposure on intestinal oxi-dative stress, barrier function, immunological and morphological changes in rats. PloS one, 9, e106412 doi: 10.1371/journal.pone.0106412.

Niermans, K., Woyzichovski, J., Kröncke, N., Benning, R., & Maul, R. (2019). Feeding study for the mycotoxin zearalenone in yel-low mealworm (Tenebrio molitor) larvae-investigation of biolog-ical impact and metabolic conversion. Mycotoxin Res 35, 231–242. doi: 10.1007/s12550-019-00346-y.

Pedersen, M. K., Sorensen, N. S., Heegaard, P. M., Beyer, N. H., & Bruun, L. (2006). Effect of different hapten-carrier conjugation ratios and molecular orientations on antibody affinity against a peptide antigen. J Immunol Methods, 311(1-2), 198–206. doi: 10.1016/j.jim.2006.02.008.

Rai, A., Das, M., & Tripathi, A. (2020). Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr, 60(16), 2710–2729. doi: 10.1080/10408398.2019.1655388.

Rogowska, A., Pomastowski, P., Sagandykova, G., & Buszewski, B. (2019). Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 162, 46–56. doi: 10.1016/j.toxicon.2019.03.004.

Selvaraj, J. N., Wang, Y., Zhou, L., Zhao, Y., Xing, F., Dai, X., & Liu, Y. (2015). Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: a review. Food Addit Contam Part A Chem Anal Control Expo Risk As-sess, 32(4), 440–452. doi: 10.1080/19440049.2015.1010185.

Sompunga, P., Pruksametanan, N., Rangnoi, K., Choowongkomon, K., & Yamabhai, M. (2019). Generation of human and rabbit re-combinant antibodies for the detection of Zearalenone by phage display antibody technology. Talanta, 201, 397–405. doi: 10.1016/j.talanta.2019.04.034.

Sun, Y., Hu, X., et al. (2014). Development of an immunochroma-tographic strip test for the rapid detection of zearalenone in corn. J Agric Food Chem, 62, 11116–11121. doi: 10.1021/jf503092j.

Tan, D. C., Flematti, G. R., Ghisalberti, E. L., Sivasithamparam, K., Chakraborty, S., Obanor, F., & Barbetti, M. J. (2011). Myco-toxins produced by Fusarium species associated with annual legume pastures and 'sheep feed refusal disorders' in Western Australia. Mycotoxin Res, 27(2), 123–135. doi: 10.1007/s12550-010-0085-0.

Wang, Y., He, C. H., Zheng, H., & Zhang, H. B. (2012). Character-ization and comparison of Fumonisin B(1)-protein conjugates by six methods. Int J Mol Sci, 13(1), 84–96. doi: 10.3390/ijms13010084.

Xu, Y., Yang, H., et al. (2018). A peptide/maltose-binding protein fusion protein used to replace the traditional antigen for immuno-logical detection of deoxynivalenol in food and feed. Food Chem, 268, 242–248. doi: 10.1016/j.foodchem.2018.06.096.

Yang, C.K., Cheng Y., et al. (2019). Prevalence of mycotoxins in feed and feed ingredients between 2015 and 2017 in Taiwan. Environ Sci Pollut Res Int, 26(23), 23798–23806. doi: 10.1007/s11356-019-05659-0.

Yaning, S. (2017). Study on Immunological Rapid Determination of Zearalenone Gansu Agricultural University, China.

Zhang, G. L., Feng, Y. L., Song, J. L., Zhou, X. S. (2018). Zeara-lenone: A Mycotoxin With Different Toxic Effect in Domestic and Laboratory Animals' Granulosa Cells. Front Genet. doi: 10.3389/fgene.2018.00667.

Zheng, W. L., Feng, N., et al. (2019). Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem Toxicol, 126, 262–276. doi: 10.1016/j.fct.2019.02.031
Published
2021-06-21
How to Cite
Wang, Y., Fotina, H., & Fotin, A. (2021). Design of antigen synthesis and identification of its artificial antigen for zearalenone. Ukrainian Journal of Veterinary and Agricultural Sciences, 4(2), 7-12. https://doi.org/https://doi.org/10.32718/ujvas4-2.02