Сell death and its significance in reproductive pathology


  • M. M. Zhelavskyi State Agrarian and Engineering University in Podilia, Shevchenko Str., 13, Kamyanets-Podilsky, 32303, Ukraine https://orcid.org/0000-0001-5001-8354
  • S. P. Kernychnyi State Agrarian and Engineering University in Podilia, Shevchenko Str., 13, Kamyanets-Podilsky, 32303, Ukraine https://orcid.org/0000-0001-9533-684X
  • O. Ya. Dmytriv Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Pekarska Str., 50, Lviv, 79010, Ukraine https://orcid.org/0000-0002-1785-8391

Abstract

Since the middle of the last century, scientists have been interested in the mechanisms of regulation of cell division, differentiation and aging of cells. The first objects of study were insects, helminths and other living organisms. From the very beginning, in the biology of cell development and regulation, scientists have attached leading importance to genetic factors. Later, more and more experience was gained on the influence of intracellular factors, metabolic changes and exogenous pathogens on the programmed cell death. Recent research on cell biology and pathology has focused on the study of apoptosis. The first described phenomenon of programmed cell death was apoptosis. Subsequent studies were aimed at the study programmed cell death. This review will provide an opportunity to consider the biological mechanisms of programmed cell death, differences and species characteristics. The author described the clinical aspects of apoptosis, necroptosis and pyroptosis and their importance in the formation of cellular homeostasis. In the present review article simple classification system, where the cell death entities are primarily categorized into programmed cell death. Multiple mechanisms and phenotypes compose programmed non-apoptotic cell death, including: autophagy, entosis, methuosis and paraptosis, mitoptosis and parthanatos, ferroptosis, pyroptosis NETosis and necroptosis. Changes of cellular regulation at development of pathologies at people and animals are considered. Cell biology includes a variety of mechanisms of programmed aging and death. Modern research is aimed at deepening the study multiple mechanisms and phenotypes compose programmed. Cells. will certainly be taken into account by the Nomenclature Committee on Cell Death. Cellular regulation is associated with a variety of physiological mechanisms of development, and is also important in processes such as inflammation, immune response, embryogenesis maintenance of tissue homeostasis. Study of factors of influence and mechanisms of regulation of aging of cells opens a curtain for development of the newest means of diagnostics of pathologies and development of pharmacological means for correction of cellular mechanisms at development of pathologies.

References

Adjemian, S., Oltean, T., Martens, S., Wiernicki, B., Goossens, V., Vanden Berghe, T., Cappe, B., Ladik, M., Riquet, F. B., Heyndrickx, L., Bridelance, J., Vuylsteke, M., Vandecasteele, K., & Vandenabeele, P. (2020). Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, se-nescence, methuosis, and iron-dependent cell death. Cell death & disease, 11(11), 1003. doi: 10.1038/s41419-020-03209-y.

Aglietti, R. A., & Dueber, E. C. (2017). Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions. Trends in immunology, 38(4), 261–271. doi: 10.1016/j.it.2017.01.003.

Arifuzzaman, M., Ang, W., Choi, H. W., Nilles, M. L., St John, A. L., & Abraham, S. N. (2018). Necroptosis of infiltrated macro-phages drives Yersinia pestis dispersal within buboes. JCI in-sight, 3(18), e122188. doi: 10.1172/jci.insight.122188.

Boucher, D., Monteleone, M., Coll, R. C., Chen, K. W., Ross, C. M., Teo, J. L., Gomez, G. A., Holley, C. L., Bierschenk, D., Stacey, K. J., Yap, A. S., Bezbradica, J. S., & Schroder, K. (2018). Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. The Journal of experimental medicine, 215(3), 827–840. doi: 10.1084/jem.20172222.

Brault, M., & Oberst, A. (2017). Controlled detonation: evolution of necroptosis in pathogen defense. Immunology and cell biology, 95(2), 131–136. doi: 10.1038/icb.2016.117.

Caccamo, A., Branca, C., Piras, I. S., Ferreira, E., Huentelman, M. J., Liang, W. S., Readhead, B., Dudley, J. T., Spangenberg, E. E., Green, K. N., Belfiore, R., Winslow, W., & Oddo, S. (2017). Necroptosis activation in Alzheimer's disease. Nature neurosci-ence, 20(9), 1236–1246. doi: 10.1038/nn.4608.

Cahilog, Z., Zhao, H., Wu, L., Alam, A., Eguchi, S., Weng, H., & Ma, D. (2020). The Role of Neutrophil NETosis in Organ Inju-ry: Novel Inflammatory Cell Death Mechanisms. Inflammation, 43(6), 2021–2032. doi: 10.1007/s10753-020-01294-x.

Chen, K. W., Demarco, B., Heilig, R., Shkarina, K., Boettcher, A., Farady, C. J., Pelczar, P., & Broz, P. (2019). Extrinsic and in-trinsic apoptosis activate pannexin-1 to drive NLRP3 inflam-masome assembly. The EMBO journal, 38(10), e101638. doi: 10.15252/embj.2019101638.

Crawford, K., Bonfiglio, J. J., Mikoč, A., Matic, I., & Ahel, I. (2018). Specificity of reversible ADP-ribosylation and regula-tion of cellular processes. Critical reviews in biochemistry and molecular biology, 53(1), 64–82. doi: 10.1080/10409238.2017.1394265.

Elliott, M. R., & Ravichandran, K. S. (2016). The Dynamics of Apoptotic Cell Clearance. Developmental cell, 38(2), 147–160. doi: 10.1016/j.devcel.2016.06.029.

Evavold, C. L., Ruan, J., Tan, Y., Xia, S., Wu, H., & Kagan, J. C. (2018). The Pore-Forming Protein Gasdermin D Regulates In-terleukin-1 Secretion from Living Macrophages. Immunity, 48(1), 35–44. doi: 10.1016/j.immuni.2017.11.013.

Fatokun, A. A., Dawson, V. L., & Dawson, T. M. (2014). Par-thanatos: mitochondrial-linked mechanisms and therapeutic op-portunities. British journal of pharmacology, 171(8), 2000–2016. doi: 10.1111/bph.12416.

Friedmann Angeli, J. P., Krysko, D. V., & Conrad, M. (2019). Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nature reviews. Cancer, 19(7), 405–414. doi: 10.1038/s41568-019-0149-1.

Galluzzi, L., Vitale, I., Warren, S., Adjemian, S., Agostinis, P., Martinez, A. B., Chan, T. A., Coukos, G., Demaria, S., Deutsch, E., Draganov, D., Edelson, R. L., Formenti, S. C., Fu-cikova, J., Gabriele, L., Gaipl, U. S., Gameiro, S. R., Garg, A. D., Golden, E., Han, J., … Marincola, F. M. (2020). Consensus guidelines for the definition, detection and interpretation of im-munogenic cell death. Journal for immunotherapy of cancer, 8(1), e000337. doi: 10.1136/jitc-2019-000337.

Ganesan, R., Hos, N. J., Gutierrez, S., Fischer, J., Stepek, J. M., Daglidu, E., Krönke, M., & Robinson, N. (2017). Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS pathogens, 13(2), e1006227. doi: 10.1371/journal.ppat.1006227.

Giampazolias, E., Zunino, B., Dhayade, S., Bock, F., Cloix, C., Cao, K., Roca, A., Lopez, J., Ichim, G., Proïcs, E., Rubio-Patiño, C., Fort, L., Yatim, N., Woodham, E., Orozco, S., Taraborrelli, L., Peltzer, N., Lecis, D., Machesky, L., Walczak, H., … Tait, S. (2017). Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nature cell biology, 19(9), 1116–1129. doi: 10.1038/ncb3596.

Gong, Y. N., Guy, C., Olauson, H., Becker, J. U., Yang, M., Fitz-gerald, P., Linkermann, A., & Green, D. R. (2017). ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell, 169(2), 286–300. doi: 10.1016/j.cell.2017.03.020.

Grootjans, S., Vanden Berghe, T., & Vandenabeele, P. (2017). Initiation and execution mechanisms of necroptosis: an over-view. Cell death and differentiation, 24(7), 1184–1195. doi: 10.1038/cdd.2017.65.

Han, Q., Ma, Y., Wang, H., Dai, Y., Chen, C., Liu, Y., Jing, L., & Sun, X. (2018). Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. Journal of translational medicine, 16(1), 201. doi: 10.1186/s12967-018-1580-x.

Hayashi, A., Yavas, A., McIntyre, C. A., Ho, Y. J., Erakky, A., Wong, W., Varghese, A. M., Melchor, J. P., Overholtzer, M., O'Reilly, E. M., Klimstra, D. S., Basturk, O., & Iacobuzio-Donahue, C. A. (2020). Genetic and clinical correlates of entosis in pancreatic ductal adenocarcinoma. Modern pathology : an of-ficial journal of the United States and Canadian Academy of Pa-thology, Inc, 33(9), 1822–1831. doi: 10.1038/s41379-020-0549-5.

Hocsak, E., Szabo, V., Kalman, N., Antus, C., Cseh, A., Sumegi, K., Eros, K., Hegedus, Z., Gallyas, F., Jr, Sumegi, B., & Racz, B. (2017). PARP inhibition protects mitochondria and reduces ROS production via PARP-1-ATF4-MKP-1-MAPK retrograde pathway. Free radical biology & medicine, 108, 770–784. doi: 10.1016/j.freeradbiomed.2017.04.018.

Huang, X., Xiao, F., Li, Y., Qian, W., Ding, W., & Ye, X. (2018). Bypassing drug resistance by triggering necroptosis: recent ad-vances in mechanisms and its therapeutic exploitation in leuke-mia. Journal of experimental & clinical cancer research: CR, 37(1), 310. doi: 10.1186/s13046-018-0976-z.

Johnson, D. C., Taabazuing, C. Y., Okondo, M. C., Chui, A. J., Rao, S. D., Brown, F. C., Reed, C., Peguero, E., de Stanchina, E., Kentsis, A., & Bachovchin, D. A. (2018). DPP8/DPP9 in-hibitor-induced pyroptosis for treatment of acute myeloid leuke-mia. Nature medicine, 24(8), 1151–1156. doi: 10.1038/s41591-018-0082-y.

Jorch, S. K., & Kubes, P. (2017). An emerging role for neutrophil extracellular traps in noninfectious disease. Nature medicine, 23(3), 279–287. doi: 10.1038/nm.4294.

Jorgensen, I., Rayamajhi, M., & Miao, E. A. (2017). Programmed cell death as a defence against infection. Nature reviews. Immu-nology, 17(3), 151–164. doi: 10.1038/nri.2016.147.

Kambara, H., Liu, F., Zhang, X., Liu, P., Bajrami, B., Teng, Y., Zhao, L., Zhou, S., Yu, H., Zhou, W., Silberstein, L. E., Cheng, T., Han, M., Xu, Y., & Luo, H. R. (2018). Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death. Cell reports, 22(11), 2924–2936. doi: 10.1016/j.celrep.2018.02.067.

Kearney, C. J., & Martin, S. J. (2017). An Inflammatory Perspective on Necroptosis. Molecular cell, 65(6), 965–973. doi: 10.1016/j.molcel.2017.02.024.

Kessel, D. (2019). Apoptosis, Paraptosis and Autophagy: Death and Survival Pathways Associated with Photodynamic Therapy. Photochemistry and photobiology, 95(1), 119–125. doi: 10.1111/php.12952.

Kessel, D. (2020). Photodynamic therapy: apoptosis, paraptosis and beyond. Apoptosis: an international journal on programmed cell death, 25(9–10), 611–615. doi: 10.1007/s10495-020-01634-0.

Khan, I., Yousif, A., Chesnokov, M., Hong, L., & Chefetz, I. (2021). A decade of cell death studies: Breathing new life into necroptosis. Pharmacology & therapeutics, 220, 107717. doi: 10.1016/j.pharmthera.2020.107717.

Kim, E. H., Shin, D., Lee, J., Jung, A. R., & Roh, J. L. (2018). CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer letters, 432, 180–190. doi: 10.1016/j.canlet.2018.06.018.

Kim, E. H., Wong, S. W., & Martinez, J. (2019). Programmed Necrosis and Disease:We interrupt your regular programming to bring you necroinflammation. Cell death and differentiation, 26(1), 25–40. doi: 10.1038/s41418-018-0179-3.

Kolb, J. P., Oguin III, T. H., Oberst, A., & Martinez, J. (2017). Programmed cell death and inflammation: winter is coming. Trends in immunology, 38(10), 705–718. doi: 10.1016/j.it.2017.06.009.

Lawlor, K. E., Feltham, R., Yabal, M., Conos, S. A., Chen, K. W., Ziehe, S., ... & Vince, J. E. (2017). XIAP loss triggers RIPK3-and caspase-8-driven IL-1β activation and cell death as a conse-quence of TLR-MyD88-induced cIAP1-TRAF2 degradation. Cell reports, 20(3), 668–682. doi: 10.1016/j.celrep.2017.06.073.

Levine, B., & Kroemer, G. (2019). Biological Functions of Autoph-agy Genes: A Disease Perspective. Cell, 176(1-2), 11–42. doi: 10.1016/j.cell.2018.09.048.

Li, J., Cao, F., Yin, H. L., Huang, Z. J., Lin, Z. T., Mao, N., Sun, B., & Wang, G. (2020). Ferroptosis: past, present and future. Cell death & disease, 11(2), 88. doi: 10.1038/s41419-020-2298-2.

Linkermann A. (2019). Death and fire-the concept of necroinflam-mation. Cell death and differentiation, 26(1), 1–3. doi: 10.1038/s41418-018-0218-0.

Liu, L., & Sun, B. (2019). Neutrophil pyroptosis: new perspectives on sepsis. Cellular and molecular life sciences: CMLS, 76(11), 2031–2042. doi: 10.1007/s00018-019-03060-1.

Liu, W., Chen, B., Wang, Y., Meng, C., Huang, H., Huang, X. R., Qin, J., Mulay, S. R., Anders, H. J., Qiu, A., Yang, B., Free-man, G. J., Lu, H. J., Lin, H. Y., Zheng, Z. H., Lan, H. Y., Huang, Y., & Xia, Y. (2018). RGMb protects against acute kid-ney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 115(7), E1475–E1484. doi: 10.1073/pnas.1716959115.

Lu, H., Zhang, S., Wu, J., Chen, M., Cai, M. C., Fu, Y., Li, W., Wang, J., Zhao, X., Yu, Z., Ma, P., & Zhuang, G. (2018). Mo-lecular Targeted Therapies Elicit Concurrent Apoptotic and GSDME-Dependent Pyroptotic Tumor Cell Death. Clinical can-cer research: an official journal of the American Association for Cancer Research, 24(23), 6066–6077. doi: 10.1158/1078-0432.CCR-18-1478.

Lyamzaev, K. G., Knorre, D. A., & Chernyak, B. V. (2020). Mitop-tosis, Twenty Years After. Biochemistry. Biokhimiia, 85(12), 1484–1498. doi: 10.1134/S0006297920120020.

Martyshuk, T. V., Gutyj, B. V., Zhelavskyi, M. M., Midyk, S. V., Fedorchenko, A. M., Todoriuk, V. B., ... & Iglitskej, I. I. (2020). Effect of Butaselmevit-Plus on the immune system of piglets during and after weaning. Ukrainian Journal of Ecology, 10(2), 347–352. doi: 10.15421/2020_106.

Mijaljica, D., Prescott, M., & Devenish, R. J. (2010). Mitophagy and mitoptosis in disease processes. Methods in molecular biol-ogy (Clifton, N.J.), 648, 93–106. doi: 10.1007/978-1-60761-756-3_6.

Mlynarczuk-Bialy, I., Dziuba, I., Sarnecka, A., Platos, E., Kow-alczyk, M., Pels, K. K., Wilczynski, G. M., Wojcik, C., & Bialy, L. P. (2020). Entosis: From Cell Biology to Clinical Cancer Pa-thology. Cancers, 12(9), 2481. doi: 10.3390/cancers12092481.

Naderer, T., & Fulcher, M. C. (2018). Targeting apoptosis pathways in infections. Journal of leukocyte biology, 103(2), 275–285. doi: 10.1189/JLB.4MR0717-286R.

Ning, X., Wang, Y., Jing, M., Sha, M., Lv, M., Gao, P., Zhang, R., Huang, X., Feng, J. M., & Jiang, Z. (2019). Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3. Molecular cell, 74(1), 19–31. doi: 10.1016/j.molcel.2019.02.013.

Okondo, M. C., Johnson, D. C., Sridharan, R., Go, E. B., Chui, A. J., Wang, M. S., Poplawski, S. E., Wu, W., Liu, Y., Lai, J. H., Sanford, D. G., Arciprete, M. O., Golub, T. R., Bachovchin, W. W., & Bachovchin, D. A. (2017). DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage py-roptosis. Nature chemical biology, 13(1), 46–53. doi: 10.1038/nchembio.2229.

Orning, P., Weng, D., Starheim, K., Ratner, D., Best, Z., Lee, B., Brooks, A., Xia, S., Wu, H., Kelliher, M. A., Berger, S. B., Gough, P. J., Bertin, J., Proulx, M. M., Goguen, J. D., Kayagaki, N., Fitzgerald, K. A., & Lien, E. (2018). Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science (New York, N.Y.), 362(6418), 1064–1069. doi: 10.1126/science.aau2818.

Orzalli, M. H., & Kagan, J. C. (2017). Apoptosis and Necroptosis as Host Defense Strategies to Prevent Viral Infection. Trends in cell biology, 27(11), 800–809. doi: 10.1016/j.tcb.2017.05.007.

Papayannopoulos, V. (2018). Neutrophil extracellular traps in im-munity and disease. Nature reviews. Immunology, 18(2), 134–147. doi: 10.1038/nri.2017.105.

Platnich, J. M., Chung, H., Lau, A., Sandall, C. F., Bondzi-Simpson, A., Chen, H. M., Komada, T., Trotman-Grant, A. C., Brandelli, J. R., Chun, J., Beck, P. L., Philpott, D. J., Girardin, S. E., Ho, M., Johnson, R. P., MacDonald, J. A., Armstrong, G. D., & Muruve, D. A. (2018). Shiga Tox-in/Lipopolysaccharide Activates Caspase-4 and Gasdermin D to Trigger Mitochondrial Reactive Oxygen Species Upstream of the NLRP3 Inflammasome. Cell reports, 25(6), 1525–1536. doi: 10.1016/j.celrep.2018.09.071.

Rathkey, J. K., Zhao, J., Liu, Z., Chen, Y., Yang, J., Kondolf, H. C., Benson, B. L., Chirieleison, S. M., Huang, A. Y., Dubyak, G. R., Xiao, T. S., Li, X., & Abbott, D. W. (2018). Chemical dis-ruption of the pyroptotic pore-forming protein gasdermin D in-hibits inflammatory cell death and sepsis. Science immunology, 3(26), eaat2738. doi: 10.1126/sciimmunol.aat2738.

Rijal, D., Ariana, A., Wight, A., Kim, K., Alturki, N. A., Aamir, Z., Ametepe, E. S., Korneluk, R. G., Tiedje, C., Menon, M. B., Gaestel, M., McComb, S., & Sad, S. (2018). Differentiated mac-rophages acquire a pro-inflammatory and cell death-resistant phenotype due to increasing XIAP and p38-mediated inhibition of RipK1. The Journal of biological chemistry, 293(30), 11913–11927. doi: 10.1074/jbc.RA118.003614.

Ritter, M., Bresgen, N., & Kerschbaum, H. H. (2021). From Pino-cytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Frontiers in cell and developmental biology, 9, 651982. doi: 10.3389/fcell.2021.651982.

Robinson, N., Ganesan, R., Hegedűs, C., Kovács, K., Kufer, T. A., & Virág, L. (2019). Programmed necrotic cell death of macro-phages: Focus on pyroptosis, necroptosis, and parthanatos. Re-dox biology, 26, 101239. doi: 10.1016/j.redox.2019.101239.

Rogers, C., Fernandes-Alnemri, T., Mayes, L., Alnemri, D., Cin-golani, G., & Alnemri, E. S. (2017). Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature communications, 8, 14128. doi: 10.1038/ncomms14128.

Ros, U., Peña-Blanco, A., Hänggi, K., Kunzendorf, U., Krautwald, S., Wong, W. W., & García-Sáez, A. J. (2017). Necroptosis Ex-ecution Is Mediated by Plasma Membrane Nanopores Independ-ent of Calcium. Cell reports, 19(1), 175–187. doi: 10.1016/j.celrep.2017.03.024.

Rühl, S., Shkarina, K., Demarco, B., Heilig, R., Santos, J. C., & Broz, P. (2018). ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science (New York, N.Y.), 362(6417), 956–960. doi: 10.1126/science.aar7607.

Sachet, M., Liang, Y. Y., & Oehler, R. (2017). The immune re-sponse to secondary necrotic cells. Apoptosis: an international journal on programmed cell death, 22(10), 1189–1204. doi: 10.1007/s10495-017-1413-z.

Sarhan, J., Liu, B. C., Muendlein, H. I., Weindel, C. G., Smirnova, I., Tang, A. Y., Ilyukha, V., Sorokin, M., Buzdin, A., Fitzger-ald, K. A., & Poltorak, A. (2019). Constitutive interferon signal-ing maintains critical threshold of MLKL expression to license necroptosis. Cell death and differentiation, 26(2), 332–347. doi: 10.1038/s41418-018-0122-7.

Sborgi, L., Rühl, S., Mulvihill, E., Pipercevic, J., Heilig, R., Stahl-berg, H., Farady, C. J., Müller, D. J., Broz, P., & Hiller, S. (2016). GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. The EMBO journal, 35(16), 1766–1778. doi: 10.15252/embj.201694696.

Snyder, A. G., Hubbard, N. W., Messmer, M. N., Kofman, S. B., Hagan, C. E., Orozco, S. L., Chiang, K., Daniels, B. P., Baker, D., & Oberst, A. (2019). Intratumoral activation of the necrop-totic pathway components RIPK1 and RIPK3 potentiates anti-tumor immunity. Science immunology, 4(36), eaaw2004. doi: 10.1126/sciimmunol.aaw2004.

Speir, M., Lawlor, K. E., Glaser, S. P., Abraham, G., Chow, S., Vogrin, A., Schulze, K. E., Schuelein, R., O'Reilly, L. A., Ma-son, K., Hartland, E. L., Lithgow, T., Strasser, A., Lessene, G., Huang, D. C., Vince, J. E., & Naderer, T. (2016). Eliminating Legionella by inhibiting BCL-XL to induce macrophage apopto-sis. Nature microbiology, 1, 15034. doi: 10.1038/nmicrobiol.2015.34.

Swerdlow, N. S., & Wilkins, H. M. (2020). Mitophagy and the Brain. International journal of molecular sciences, 21(24), 9661. doi: 10.3390/ijms21249661.

Szwed, M., Sønstevold, T., Øverbye, A., Engedal, N., Grallert, B., Mørch, Ý., Sulheim, E., Iversen, T. G., Skotland, T., Sandvig, K., & Torgersen, M. L. (2019). Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology, 13(6), 761–782. doi: 10.1080/17435390.2019.1576238.

Tang, R., Xu, J., Zhang, B., Liu, J., Liang, C., Hua, J., Meng, Q., Yu, X., & Shi, S. (2020). Ferroptosis, necroptosis, and pyropto-sis in anticancer immunity. Journal of hematology & oncology, 13(1), 110. doi: 10.1186/s13045-020-00946-7.

Tonnus, W., & Linkermann, A. (2017). The in vivo evidence for regulated necrosis. Immunological reviews, 277(1), 128–149. doi: 10.1111/imr.12551.

Wang, Y. Y., Liu, X. L., & Zhao, R. (2019). Induction of Pyropto-sis and Its Implications in Cancer Management. Frontiers in on-cology, 9, 971. doi: 10.3389/fonc.2019.00971.

Wang, Y., Gao, W., Shi, X., Ding, J., Liu, W., He, H., Wang, K., & Shao, F. (2017). Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 547(7661), 99–103. doi: 10.1038/nature22393.

Wang, Y., Shi, P., Chen, Q., Huang, Z., Zou, D., Zhang, J., Gao, X., & Lin, Z. (2019). Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. Journal of molecu-lar cell biology, 11(12), 1069–1082. doi: 10.1093/jmcb/mjz020.

Wei, Q., Zhu, R., Zhu, J., Zhao, R., & Li, M. (2019). E2-Induced Activation of the NLRP3 Inflammasome Triggers Pyroptosis and Inhibits Autophagy in HCC Cells. Oncology research, 27(7), 827–834. doi: 10.3727/096504018X15462920753012.

Weinlich, R., Oberst, A., Beere, H. M., & Green, D. R. (2017). Necroptosis in development, inflammation and disease. Nature reviews. Molecular cell biology, 18(2), 127–136. doi: 10.1038/nrm.2016.149.

Wu, D., Wang, S., Yu, G., & Chen, X. (2021). Cell Death Mediated by the Pyroptosis Pathway with the Aid of Nanotechnology: Prospects for Cancer Therapy. Angewandte Chemie (Interna-tional ed. in English), 60(15), 8018–8034. doi: 10.1002/anie.202010281.

Xi, G., Gao, J., Wan, B., Zhan, P., Xu, W., Lv, T., & Song, Y. (2019). GSDMD is required for effector CD8+ T cell responses to lung cancer cells. International immunopharmacology, 74, 105713. doi: 10.1016/j.intimp.2019.105713.

Yablonskyi, V. A., & Zhelavskyi, M. M. (2014). Stan apoptozu imunokompetentnykh klityn sekretu molochnoi zalozy koriv u rizni periody laktatsii. Naukovo-tekhnichnyi biuleten Naukovo-doslidnoho tsentru biobezpeky ta ekolohichnoho kontroliu resursiv APK Dnipropetrovskoho derzhavnoho ahrarno-ekonomichnoho universytetu, 2(3), 39–45. URL: http://nbuv.gov.ua/UJRN/ ndbnndc_2014_2_3_8 (in Ukrainian).

Yablonskyi, V. A., & Zhelavskyi, M. M. (2008). Apoptoz іmunokompetentnyh klіtyn krovі korіv u perіod laktacіi. Nau-kovyi vіsnyk Nacіonal'nogo agrarnogo unіversitetu, 126, 233–236 (in Ukrainian).

Yablonskyi, V. A., & Zhelavskyi, M. M. (2010). Osoblyvostі pro-javu klіtynnogo іmunnogo zahystu organіzmu korіv v rіznі perіody laktacіi. Naukovі dopovіdі Nacіonal'nogo unіversitetu bіoresursіv і pryrodokorystuvannja Ukraini, 2(20), 1–8. URL: http://nd.nubip.edu.ua/2010-4/10yvalsm.pdf (in Ukrainian).

Yang, L., Song, L., Zhao, S., Ma, C., Wu, D., & Wu, Y. L. (2019). Isobavachalcone reveals novel characteristics of methuosis-like cell death in leukemia cells. Chemico-biological interactions, 304, 131–138. doi: 10.1016/j.cbi.2019.03.011.

Yoon, S., Kovalenko, A., Bogdanov, K., & Wallach, D. (2017). MLKL, the Protein that Mediates Necroptosis, Also Regulates Endosomal Trafficking and Extracellular Vesicle Generation. Immunity, 47(1), 51–65. doi: 10.1016/j.immuni.2017.06.001.

Yu, S. X., Chen, W., Liu, Z. Z., Zhou, F. H., Yan, S. Q., Hu, G. Q., Qin, X. X., Zhang, J., Ma, K., Du, C. T., Gu, J. M., Deng, X. M., Han, W. Y., & Yang, Y. J. (2018). Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by En-hancing Inflammasome Activation. Frontiers in immunology, 9, 119. doi: 10.3389/fimmu.2018.00119.

Zargarian, S., Shlomovitz, I., Erlich, Z., Hourizadeh, A., Ofir-Birin, Y., Croker, B. A., Regev-Rudzki, N., Edry-Botzer, L., & Gerlic, M. (2017). Phosphatidylserine externalization, “necroptotic bod-ies” release, and phagocytosis during necroptosis. PLoS biology, 15(6), e2002711. doi: 10.1371/journal.pbio.2002711.

Zhang, C. C., Li, C. G., Wang, Y. F., Xu, L. H., He, X. H., Zeng, Q. Z., Zeng, C. Y., Mai, F. Y., Hu, B., & Ouyang, D. Y. (2019). Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis: an international journal on programmed cell death, 24(3-4), 312–325. doi: 10.1007/s10495-019-01515-1.

Zhelavskyi, M. M. (2004). Nespecyfіchna reaktyvnіst' organіzmu korіv pry mastytі. Naukovyi vіsnyk LNAVM іm. S. Z. Gzhic'kogo, 6(1), 31–35 (in Ukrainian).

Zhelavskyi, M. M. (2005). Bіometrichnij analіz pokaznykіv nespecyfіchnogo іmunnogo zahystu korіv v rіznі perіody funkcіonal'nogo stanu molochnoi zalozy. Naukovo-tehnіchnyi bjuleten' іnstytutu bіologіi tvaryn і Derzhavnogo naukovo-doslіdnogo kontrol'nogo іnstytutu veterynarnyh preparatіv ta kormovyh dobavok, 6(2), 70–73 (in Ukrainian).

Zhelavskyi, M. M. (2006). Doslіdzhennja metabolіchnoi aktyvnostі nejtrofіlіv molozyva korіv v NST-testі. Naukovyi vіsnyk LNAVM іm. S. Z. Gzhyc'kogo, 8(3(30), 40–42 (in Ukrainian).

Zhelavskyi, M. M. (2007). Apoptoz nejtrofіl'nyh granulocytіv krovі korіv pry fіzіologіchnіj laktacіi. Vіsnyk SNAU, 8(19), 37–39 (in Ukrainian).

Zhelavskyi, M. M. (2008). Funkcіonal'na aktyvnіst' ta stan apoptozu fagocytіv krovі korіv v perіod laktacіi. Naukovyi vіsnyk Scientific Messenger of LNAVM іm. S. Z. Gzhic’kogo, 10(2(37), 72–75 (in Ukrainian).

Zhelavskyi, M. M. (2009). Funkcіonal'nyi stan ta apoptoz fagocytіv sekretu molochnoi zalozy korіv pry subklіnіchnomu mastytі. Vіsnyk BDAU, 60(1), 57–60 (in Ukrainian).

Zhelavskyi, M. M. (2010). Zmіny fagocytarnogo zahystu organіzmu korіv pry subklіnіchnomu mastytі. Naukovyi vіsnyk Scientific Messenger of LNUVMB іm. S. Z. Gzhyckogo, 12(2(44), 93–96 (in Ukrainian).

Zhelavskyi, M. M. (2011). Zmіny protymіkrobnogo potencіalu fagocytіv za mastytu korіv. Problemy zooіnzhenerіi ta veteri-narnoi medycyny, 23(2), 438–440 (in Ukrainian).

Zhelavskyi, M. M. (2017). Ontogenetic features of the formation of local immune protection of the mammary gland of cows (litera-ture review and original research). Scientific Messenger of LNUVMB named after S.Z. Gzhytskyj, 19(79), 3–8. doi: 10.15421/nvlvet7801.

Zhelavskyi, M. M. (2019). Study of innate factors in the local im-mune defense of the genital organs of dogs and cats. Scientific Messenger of LNUVMB named after S.Z. Gzhytskyj, 21(93), 98–102. doi: 10.32718/nvlvet9317.

Zhelavskyi, M. M. (2021). The role of neutrophil on subclinical mastitis in cows. Polish Journal of Natural Sciences, 36(1), 107–115. URL: http://www.uwm.edu.pl/polish-journal/sites/ de-fault/files/issues/articles/07-zhelavskyi.pdf.

Zhelavskyi, M. M., & Shunin, I. M. (2017). The status of extracellu-lar antimicrobial potential of phagocytes genitals of cats. Scien-tific Messenger of Lviv National University of LNUVMB named after S.Z. Gzhytskyj, 19(73), 71–74. doi: 10.15421/nvlvet7315.

Zhelavskyi, M., Shunin, I., & Midyk, S. (2020). Extracellular anti-bacterial defense mechanisms of neutrophil granulocytes and their role in pathogenesis of pyometra (cases) in cats. Polish Journal of Natural Sciences, 35(3), 363–378. URL: http://www.uwm.edu.pl/ polish-journal/sites/default/files/issues/articles/09-zhelavsky.pdf.

Zhelavskyi, M., Kernychnyi, S., Mizyk, V., Dmytriv, O., & Betlin-ska, T. (2020). The importance of metabolic processes and im-mune responses in the development of pathology of cows during pregnancy and postpartum periods. Ukrainian Journal of Veter-inary and Agricultural Sciences, 3(2), 36–41. doi: 10.32718/ujvas3-2.06.

Zhelavskyi, N. N. (2015). Funkcional'noe sostojanie kletochnyh faktorov lokal'nogo immuniteta molochnoj zhelezy korov v razlichnye periody laktacii. Aktual'nye problemy intensivnogo razvitija zhivotnovodstva,18(2), 187‒197 (in Russian).

Zhelavskyi, N. N. (2017). Izmenenie lokal'noj immunnoj zashhity molochnoj zhelezy korov pri mastite. Uchenye zapiski uchrezhdenija obrazovanija “Vitebskaja ordena “Znak pocheta” “Znak Pocheta” GAVM”, 53(2), 53‒56. URL: http://repo.vsavm.by/handle/123456789/2023 (in Russian).

Zhelavskyi, N. N., & Yablonskyi, V. A. (2009). Izmenenie funkcional'nogo sostojanija kletochnogo zvena immunobiolog-icheskoj zashhity organizma korov pri subklinicheskom mastite. Uchenye zapiski: Nauchno-prakticheskij zhurnal uchrezhdenija obrazovanija “Vitebskaja ordena «Znak Pocheta” GAVM”, 45(1), 244–246 (in Russian).

Zhou, B., Liu, J., Kang, R., Klionsky, D. J., Kroemer, G., & Tang, D. (2020). Ferroptosis is a type of autophagy-dependent cell death. Seminars in cancer biology, 66, 89–100. doi: 10.1016/j.semcancer.2019.03.002.

Zhou, B., Zhang, J. Y., Liu, X. S., Chen, H. Z., Ai, Y. L., Cheng, K., Sun, R. Y., Zhou, D., Han, J., & Wu, Q. (2018). Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell research, 28(12), 1171–1185. doi: 10.1038/s41422-018-0090-y
Published
2021-06-21
How to Cite
Zhelavskyi, M., Kernychnyi, S., & Dmytriv, O. (2021). Сell death and its significance in reproductive pathology. Ukrainian Journal of Veterinary and Agricultural Sciences, 4(2), 18-26. https://doi.org/https://doi.org/10.32718/ujvas4-2.04