Intestinal histostructure and immune protection activity of age -1+ carp after consumption of a prebiotic feed additive


  • O. P. Dobrianska Lviv Experimental Station of the Institute of Fisheries NAAS, Lvivska Str., 11, Velykyi Liubin, 81555, Ukraine https://orcid.org/0000-0001-7238-5059
  • M. I. Zhyla State Scientific-Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donets’ka Str., 11, Lviv, 79019, Ukraine https://orcid.org/0000-0003-1206-168X
  • O. I. Vishchur Institute of Animal Biology NAAS, V. Stusa Str., 38, Lviv, 79034, Ukraine https://orcid.org/0000-0003-4503-3896
  • O. V. Deren Institute of Fisheries NAAS, Obukhivska Str., 135, Kyiv, 03164, Ukraine https://orcid.org/0000-0002-8246-9456
  • M. Z. Koryliak Institute of Fisheries NAAS, Obukhivska Str., 135, Kyiv, 03164, Ukraine
Keywords: carp, prebiotics, mannan oligosaccharides, morphology, morphometry, intestine, resistance

Abstract

Currently, it is important in aquaculture to study and use products and additives, which have positive effects on the digestibility of nutrients by helping to normalize the intestinal microflora, thereby modulating fish immune response. The aim of the study was to assess the effect of a prebiotic based on mannan oligosaccharides produced from the outer walls of Saccharomyces cerevisiae cells on the histological structure, morphometric state of the intestine and activity of cellular and humoral components of nonspecific resistance of age -2+ carp. The experiment was conducted in four analogous ponds, which were stocked with age-1 scaly carp with an average weight of 55–58 g with a stocking density of 1000 fish/ha. Carp had been fed balanced compound feed for 60 days. Experimental groups of fish were fed with a prebiotic as a feed additive in the amount of: 0.025 % – Experiment 1, 0.05 % – Experiment 2 and 0.075 % – Experiment 3. Use of the studied prebiotic did not damage the intestinal histological structure of carp of the experimental groups. The villi height and intestinal crypt depth of carp in Experiment 1 (P < 0.05) and Experiment 2 (P < 0.01) were larger compared to the control group. Experiment 3 showed destructive changes in intestinal mucosa. The results of histological examination indicated the effectiveness of the use of the studied prebiotic in the amount of 0.025 and 0.05 % in the diet of age -1+ carp due to the absence of pathological changes and active morphofunctional state of the intestine, which, in turn, had a positive effect on feed absorption and metabolic processes in fish body. Analysis of the indicators of cellular and humoral links of natural resistance showed that in carp of the second and third experimental groups lysozyme activity of serum was 5 and 11 % (P < 0.001) higher than in the control group. Similar changes, though found in a greater extent, were recorded in the study of bactericidal activity of blood serum, especially in individuals of the second and third experimental groups (by 6.8 (P < 0.01) and 15.2 %). While with carps of the third experimental group, which used a prebiotic drug in the amount of 0.075 %, the content of CEC was 20.5 % higher than in the control group, which indicates an additional antigenic load on the body and is an unfavorable diagnostic factor. At the same time, with the fish of the second experimental group, which received, respectively, 0.05 % of the supplement of the drug “Actigen” to the main diet, probably higher phagocytic activity of blood neutrophils was recorded. A direct dependence of the growth of the phagocytic index and the phagocytic number of neutrophils on the dose of the studied prebiotic was detected. Immunological studies indicated a dose-dependent effect of the prebiotic on the activity of cellular and humoral components of non-specific resistance of carp. Given this, for the effective functioning of innate protective mechanisms, for the increase of the body's immune potential and productivity, it is most appropriate to apply to the diet of carp prebiotic supplement “Actigen” in the amount of 0.025 and 0.05 %.

References

Akhter, N., Wu, B., Memon A. M. & Mohsin M. (2015). Probiotics and prebiotics associated in aquaculture: a review. Fish Shellfish Immunol, 45, 733–741. doi: 10.1016/j.fsi.2015.05.038.

Andrews, S. R., Narottam, P., Sahu, N., Pal, A. K., & Kumar, S. (2009). Haematological modulation and growth of Labeo rohi-ta fingerlings: effect of dietary mannan oligosaccharide, yeast extract, protein hydrolysate and chlorella. Aguaculture Research, 41(1), 61–69. doi: 10.1111/j.1365-2109.2009.02304.x.

Asaduzzaman, M. D., Iehata, S., Aker, S., Kader, M. D. A., Ghosh, S. K., Nurul Absar Khan, M., & Abol-Muna, A.B. (2018). Ef-fects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids pro-duction of Malaysian Mahseer Tor tambroides. Aguaculture Re-search, 9, 53–61. doi: 10.1016/j.aqrep.2017.12.003.

Avtandilov, H. H. (1990). Meditsinskaia morfometriia. M., Medytsyna (in Russian).

Bondad-Reantaso, M. G., Subasinghe, R. P., & Arthur, J. R. (2005). Disease and health management in Asian aquaculture. Vet Parasitol, 132(3-4), 249–272. doi: 10.1016/j.vetpar.2005.07.005.

Chernikova, G., & Procopenko, N. (2017). Slaughter quality of broiler-chickens by prebiotic Actigen using. Agrobiodiversity, 1, 50–53. doi: 10.15414/agrobiodiversity.2017.2585-8246.50-53.

Chernushenko, E. F., & Kogosova, P. S. (1981). Immunologiya i immunopatologiya zabolevaniy legkikh – Immunology and the dysimmunity of phthisis. Kyiv (in Russian).

Das, S., Mondal, K., & Haque, S. (2017). A review on application of probiotic, prebiotic and synbiotic for sustainable development of aquaculture. Journal of Entomology and Zoology Studies, 5(2), 422–429. URL: https://www.entomoljournal.com/archives/ 2017/vol5issue2/PartF/5-1-82-948.pdf.

Dekhtiarov, P. A., Yevtushenko, M. Yu., Sherman, I. M. (2008). Fiziolohiia ryb. K., Ahrarna osvita (in Ukrainian).

Dimitroglou, A., Merrifield D. L., Moate, R., Davies S. J., Spring, P., Sweetman, J. & Bradley G. (2009). Dietary mannan oligo-saccharide supplementation modulates intestinal microbial ecolo-gy and improves gut morphology of rainbow trout, Oncorhyn-chus mykiss (Walbaum). J. Anim. Sci., 87(10), 3226–3234. doi: 10.2527/jas.2008-1428.

Dobrianska, O. P., Deren, O. V. & Hryhorenko, T. V. (2019). Produktyvni pokaznyky dvolitok koropa pry zastosuvanni v ho-divli prebiotyka v umovakh vyroshchuvalnykh staviv. Rybohos-podarska nauka, 4(50), 95–108. doi: 10.15407/fsu2019.04.095 (in Ukrainian).

European Convention for the Protection of Vertebrate Animals Used for Research and Other Scientific Purposes. Strasbourg, March 18, 1986.

Grisdale-Helland, B., Helland, S. J. & Gatlin III D. M. (2008). The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon. Aquaculture, 283(1–4), 163–167. doi: 10.1016/j.aquaculture.2008.07.012.

Guerreiro, I., Olivia-Teles, A., & Enes, P. (2018). Prebiotics as functional ingredients: Focus on Mediterranean fish aquaculture. Rev. Aquac., 10, 800–832. doi: 10.1111/RAQ.12201.

Gultepe, N., Salnur, S., Hossu B. & Hisar, O. (2010). Dietary sup-plementation with Mannanoligosaccharides (MOS) from Bio-Mos enhances growth parameters and digestive capacity of gilt-head sea bream (Sparus aurata). Aquac. Nutr., 17(5), 482–487. doi: 10.1111/j.1365-2095.2010.00824.x.

Haievska, M. Iu. (2000). Tsyrkuliuiuchi imunni kompleksy za umov normy tapatolohii. Visn. nauk. dosl., 4, 37–40 (in Ukrainian).

Horalskyi, L. P. (2005). Osnovy histolohichnoi tekhniky i mor-fofunktsionalni metody doslidzhen u normi ta pry patolohii. Zhytomyr, Polissia (in Ukrainian).

Hoseinifar, S. H., Cuesta, A., Sun, Y., & Cuesta, A. (2015). Prebi-otics and Fish Immune Response: A Review of Current Knowledge and Future Perspectives. Reviews in Fisheries Sci-ence & Aquaculture. 23(4), 315–328. doi: 10.1080/23308249.2015.1052365.

Ibrahem, M. D., Fathi, M., Mesalhy, S. & Abd El-Aty, A. M. (2010). Effect of dietary supplementation of Inulin and vitamin C on the growth, hematology, innate immunity and resistance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 29, 241–246. doi: 10.1016/j.fsi.2010.03.004.

Koryliak, M. Z. (2015). Morfolohichna kharakterystyka kysh-kivnyka ta hepatopankreasu dvolitok koropa pry zastosuvanni rozmelenykh plodiv roztoropshi pliamystoi. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho, 17, 218–223 (in Ukraini-an).

Kotsiumbas, I. Ya., Zhyla, M. I., Piatnychko, O. M. [ta in.]. (2014). Imunotoksykolohichnyi kontrol veterynarnykh preparativ ta kormovykh dobavok. Metodychni rekomendatsii. Lviv (in Ukrainian).

Maslianko, R. P. (1999). Osnovy imunolohii. Lviv: Vertykal (in Ukrainian).

Merrifield, D., & Ringo, E. (2014). Aquaculture nutrition. Gut health, probiotics and prebiotics. Chichester, Wiley-Blackwell Publishing.

Mikryakov, V. R. (1991). Zakonomernosti formirovaniya pri-obretennogo immuniteta u ryib. Ryibinsk: IBVV RAN (in Rus-sian).

Nayak, S. K. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29(1), 2–14. doi: 10.1016/j.fsi.2010.02.017.

Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B. & Sasal, P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aqua-cult., 433, 50–61. doi: 10.1016/j.aquaculture.2014.05.048.

Ringo, E., Olsen, R. E., Gifstad, T. O., Dalmo, R. A., Amlung, H., Hemre, G-I., & Bakke, A. M. (2010). Prebiotics in aquaculture: a review. Aquaculture Nutrition, 16(2), 117–136. doi: 10.1111/j.1365-2095.2009.00731.x.

Robb, D. H. F., & Crampton, V. O. (2013). On-farm feeding and feed management: perspectives from the fish feed industry. On-farm feeding and feed management in aquaculture. Rome: FAO, 2013. 489–518. (FAO Fisheries and Aquaculture Tech-nical Paper; No. 583).

Rotkiewicz, T. (1990). Patomorfologiczne metody badania zwierzat. ART Olsztyn.

Samrongpan, C., Areechon, N., Yoonpundhan, R., & Srisapoome, P. (2008). Effects of mannan oligosaccharide on growth survival and disease resistance of Nile Tilapia (Oreochromis niloticus L.) fry. Proceedings of the 8th International Symposium on Tilapia in Aquaculture, October 12-18, 2008, Cairo, Egypt, 345–353.

Sang, H. M., & Fotedar, R. (2010). Effects of mannan oligosaccha-ride dietary supplementation on performances of the tropical spiny lobsters juvenile (Panulirus ornatus, Fabricius 1798). Fish Shellfish Immunol., 28(3), 483–489. doi: 10.1016/j.fsi.2009.12.011.

Secomber, C. J. (1996). The nonspecific immune system: cellular defences. The fish immune system. Fish Physiology series, 15, 63–103.

Song, S. K., Beck, B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø, E. (2014). Prebiotics as immunostimulants in aquacul-ture: A review. Fish Shellfish Immunol., 40(1), 40–48. doi: 10.1016/j.fsi.2014.06.016.

Statistical principles for veterinary clinical trials. CVMP/EWP/81976/2010.

Tarasenko, N. A., & Filippova, E. V. (2014). Briefly on prebiotics: history, classification, preparation, application. Basic research, 6, 1.

Torrecillas, S., Makol, A., Caballero, M. J., Montero, D., Ginés, R., Sweetman, J., & Izquierdo, M. (2011). Improved feed utiliza-tion, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquacult Nutr., 17(2), 223–233. doi: 10.1111/j.1365-2095.2009.00730.x.

Torrecillas, S., Makol, A., Caballero, M. J., Montero, D., Robaina L. et al. (2007). Immune stimulation and improved infection re-sistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish Shellfish Immunol., 23(5), 969–981. doi: 10.1016/j.fsi.2007.03.007.

Torrecillas, S., Montero, D., & Izquierdo, M. (2014). Improved health and growth of fish fed mannan oligosaccharides: potential mode of action. Fish Shellfish Immunol., 36(2), 525–544. doi: 10.1016/j.fsi.2013.12.029.

Ye, J., Liu, X., Wang, Z., & Wang, K. (2011). Effect of partial fish meal replacement by soybean meal on the growth performance and biochemical indices of juvenile Japanese flounder Paralich-thys olivaceus. Aquacult Int., 19, 143–153. doi: 10.1007/s10499-010-9348-1.

Zhyla, M. I. (2011). Laboratorni doslidzhennia pry klinichnomu vyprobuvanni veterynarnykh likarskykh zasobiv. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. S. Z. Gzhytskoho, 13(4(1), 128–134 (in Ukrainian).

Ziółkowska, E., Bogucka, J., Dankowiakowska, A., Rawski, M., Mazurkiewicz, J., & Stanek, M. (2020). Effects of a Trans-Galactooligosaccharide on Biochemical Blood Parameters and Intestine Morphometric Parameters of Common Carp (Cyprinus carpio L.). Animals, 10(4), 723. doi: 10.3390/ani10040723.
Published
2021-06-21
How to Cite
Dobrianska, O., Zhyla, M., Vishchur, O., Deren, O., & Koryliak, M. (2021). Intestinal histostructure and immune protection activity of age -1+ carp after consumption of a prebiotic feed additive. Ukrainian Journal of Veterinary and Agricultural Sciences, 4(2), 31-37. https://doi.org/https://doi.org/10.32718/ujvas4-2.06