Antimicrobial peptide MPX alleviates the lethal attack of Escherichia coli in mice

Keywords: antimicrobial peptide MPX, Escherichia coli, mice


Escherichia coli is an important zoonotic pathogen causing intestinal diseases. In recent years, due to the unreasonable use of antibiotics, the drug resistance of bacteria has been increasing, and the proportion of multi-drug resistant strains has also been rising, which directly threatens the health of animals and humans. The antimicrobial peptide MPX was isolated from wasp venom and had better antibacterial activity against Gram-positive and Gram-negative bacteria. Studies have found that MPX had better bactericidal activity against E. coli in vitro. However, whether MPX also has better bactericidal activity in mice is still unknown. This study found that E. coli infected mice lost appetite, diarrhea, and grouping together, while MPX treatment significantly alleviated these symptoms. The autopsy results found that the intestinal congestion, bleeding, thinning of the intestinal wall, yellow viscous fluid in the intestinal cavity, congestion of the lungs, necrosis in the liver, congestion, and bleeding of the spleen, and MPX treatment effectively relieved the above symptoms. The qRT-PCR results found that MPX could increase the mRNA expression of the antibacterial protein TFF3 in the jejunum and colon and reduce the expression of the antibacterial protein Remlβ and REG3γ in the jejunum and colon. H&E staining results further found that MPX could alleviate the pathological damage of mouse intestines and organs caused by E. coli infection. The above results show that MPX has good bactericidal activity against E. coli infection in mice, providing an essential reference for screening drugs for the clinical treatment of E. coli infection.


Al Adwani, S., Padhi, A., Karadottir, H., Mörman, C., Gräslund, A., Végvári, Á., Johansson, J., Rising, A., Agerberth, B., & Bergman, P. (2021). Citrullination Alters the Antibacterial and Anti-Inflammatory Functions of the Host Defense Peptide Ca-nine Cathelicidin K9CATH In Vitro. J Immunol, 207(3), 974–984. DOI: 10.4049/jimmunol.2001374.
Bae, Y.-M., Song, H., & Lee, S.-Y. (2021). Salt, glucose, glycine, and sucrose protect Escherichia coli O157:H7 against acid treatment in laboratory media. Food Microbiology, 100, 103854. DOI: 10.1016/
Buxser, S. (2021). Has resistance to chlorhexidine increased among clinically-relevant bacteria? A systematic review of time course and subpopulation data. PloS one, 16(8), e0256336. DOI: 10.1371/journal.pone.0256336.
Cash, H. L., Whitham, C. V., Behrendt, C. L., & Hooper, L. V. (2006). Symbiotic bacteria direct expression of an intestinal bac-tericidal lectin. Science, 313(5790), 1126–1130. DOI: 10.1126/science.1127119.
Christa, L., Carnot, F., Simon, M. T., Levavasseur, F., Stinnakre, M. G., Lasserre, C., Thepot, D., Clement, B., Devinoy, E., & Brechot, C. (1996). HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am J Physiol, 271(6 Pt 1), G993–1002. DOI: 10.1152/ajpgi.1996.271.6.G993.
Gallo, R. L., & Hooper, L. V. (2012). Epithelial antimicrobial de-fence of the skin and intestine. Nat Rev Immunol, 12(7), 503–516. DOI: 10.1038/nri3228.
Ge, H., Gardner, J., Wu, X., Rulifson, I., Wang, J., Xiong, Y., Ye, J., Belouski, E., Cao, P., Tang, J., Lee, K. J., Coberly, S., Wu, X., Gupte, J., Miao, L., Yang, L., Nguyen, N., Shan, B., Yeh, W. C., Veniant, M. M., Li, Y., & Baribault, H. (2015). Trefoil Factor 3 (TFF3) Is Regulated by Food Intake, Improves Glu-cose Tolerance and Induces Mucinous Metaplasia. PLoS One, 10(6), e0126924. DOI: 10.1371/journal.pone.0126924.
Gong, C., Sun, J., Xiao, Y., Qu, X., & Lang, M. (2021). Synthetic Mimics of Antimicrobial Peptides for the Targeted Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater, e2101244. DOI: 10.1002/adhm.202101244.
He, Q., Li, J. K., Li, F., Li, R. G., Zhan, G. Q., Li, G., Du W. X., & Tan, H. B. (2015). Mechanism of action of gypenosides on type 2 diabetes and non-alcoholic fatty liver disease in rats. World J Gastroenterol, 21(7), 2058–2066. DOI: 10.3748/wjg.v21.i7.2058.
Hosoya, A., Takahama, A., & Nakamura, H. (2017). Localization of RELM-β/FIZZ2 Is Associated with Cementum Formation. Ana-tomical record (Hoboken), 300(10), 1865–1874. DOI: 10.1002/ar.23636.
Liang, G., Rao, Y., Wang, S., Chi, X., Xu, H., Shen, Y. (2021). Escherichia coliCo-Occurrence of NDM-9 and MCR-1 in a Human Gut Colonized ST1011. Infection and drug resistance, 2021(14), 3011–3017. DOI: 10.2147/IDR.S321732.
Malavolta, M., Basso, A., Giacconi, R., Orlando, F., Pierpaoli, E., Cardelli, M., Leoni, F., Chierichetti, S., Bray, D., Benlhassan, K., & Provinciali, M. (2019). Recovery from mild Escherichia coli O157:H7 infection in young and aged C57BL/6 mice with intact flora estimated by fecal shedding, locomotor activity and grip strength. Comparative immunology, microbiology and in-fectious diseases, 63, 1–9. DOI: 10.1016/j.cimid.2018.12.003.
Piyadasa, H., Hemshekhar, M., Osawa, N., Lloyd, D., Altieri, A., Basu, S., Krokhin, O. V., Halayko, A. J., & Mookherjee, N. (2021). Disrupting Tryptophan in the Central Hydrophobic Re-gion Selectively Mitigates Immunomodulatory Activities of the Innate Defence Regulator Peptide IDR-1002. J Med Chem, 64(10), 6696–6705. DOI: 10.1021/acs.jmedchem.0c02065.
Roque-Borda, C. A., Pereira, L. P., Guastalli, E., Soares, N. M., Mac-Lean, P., Salgado, D. D., Meneguin, A. B., Chorilli, M., & Vicente, E. F. (2021). HPMCP-Coated Microcapsules Contain-ing the Ctx(Ile(21))-Ha Antimicrobial Peptide Reduce the Mor-tality Rate Caused by Resistant Salmonella Enteritidis in Laying Hens. Antibiotics (Basel), 10(6), 616. DOI: 10.3390/antibiotics10060616.
Santos, B., Alves, E., Ferreira, C. S., Ferreira-Silva, A., Goes-Neto, A., Verly, R. M., Liao, L. M., Oliveira, S. C., & de Magalhaes, M. (2021). Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochim Biophys Acta Gen Subj, 1865(11), 129989. DOI: 10.1016/j.bbagen.2021.129989.
Shang, L., Yu, H., Liu, H., Chen, M., Zeng, X., & Qiao, S. (2021). Recombinant antimicrobial peptide microcin J25 alleviates DSS-induced colitis via regulating intestinal barrier function and mod-ifying gut microbiota. Biomed Pharmacother, 139, 111127. DOI: 10.1016/j.biopha.2020.111127.
Wlodarska, M., & Finlay, B. B. (2010). Host immune response to antibiotic perturbation of the microbiota. Mucosal Immunol, 3(2), 100–103. DOI: 10.1038/mi.2009.135.
Xie, Z., Zhao, Q., Wang, H., Wen, L., Li, W., Zhang, X., Lin, W., Li, H., Xie, Q., & Wang, Y. (2020). Effects of antibacterial pep-tide combinations on growth performance, intestinal health, and immune function of broiler chickens. Poult Sci, 99(12), 6481–6492. DOI: 10.1016/j.psj.2020.08.068.
Xiong, B., Zhang, W., Wu, Z., Liu, R., Yang, C., Hui, A., Huang, X., & Xian, Z. (2021). Okra pectin relieves inflammatory re-sponse and protects damaged intestinal barrier in caerulein-induced acute pancreatic model. J Sci Food Agric, 101(3), 863–870. DOI: 10.1002/jsfa.10693.
Zhang, X., Zhao, Q., Wen, L., Wu, C., Yao, Z., Yan, Z., Li, R., Chen, L., Chen, F., Xie, Z., Chen, F., & Xie, Q. (2021). The Ef-fect of the Antimicrobial Peptide Plectasin on the Growth Per-formance, Intestinal Health, and Immune Function of Yellow-Feathered Chickens. Front Vet Sci, 8, 688611. DOI: 10.3389/fvets.2021.688611.
Zhao, X., Wang, L., Zhu, C. et al. (2021). Escherichia coliThe Anti-microbial Peptide Mastoparan X Protects Against Enterohemor-rhagic O157:H7 Infection, Inhibits Inflammation, and Enhances the Intestinal Epithelial Barrier. Frontiers in microbiology, 12, 644887. DOI: 10.3389/fmicb.2021.644887.
How to Cite
Zhao, X. (2021). Antimicrobial peptide MPX alleviates the lethal attack of Escherichia coli in mice. Ukrainian Journal of Veterinary and Agricultural Sciences, 4(3), 16-21.